{"title":"Heterogeneous Mediation Analysis for Cox Proportional Hazards Model With Multiple Mediators.","authors":"Rongqian Sun, Xinyuan Song","doi":"10.1002/sim.10239","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a heterogeneous mediation analysis for survival data that accommodates multiple mediators and sparsity of the predictors. We introduce a joint modeling approach that links the mediation regression and proportional hazards models through Bayesian additive regression trees with shared typologies. The shared tree component is motivated by the fact that confounders and effect modifiers on the causal pathways linked by different mediators often overlap. A sparsity-inducing prior is incorporated to capture the most relevant confounders and effect modifiers on different causal pathways. The individual-specific interventional direct and indirect effects are derived on the scale of the logarithm of hazards and survival function. A Bayesian approach with an efficient Markov chain Monte Carlo algorithm is developed to estimate the conditional interventional effects through the Monte Carlo implementation of the mediation formula. Simulation studies are conducted to verify the empirical performance of the proposed method. An application to the ACTG175 study further demonstrates the method's utility in causal discovery and heterogeneity quantification.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5497-5512"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10239","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a heterogeneous mediation analysis for survival data that accommodates multiple mediators and sparsity of the predictors. We introduce a joint modeling approach that links the mediation regression and proportional hazards models through Bayesian additive regression trees with shared typologies. The shared tree component is motivated by the fact that confounders and effect modifiers on the causal pathways linked by different mediators often overlap. A sparsity-inducing prior is incorporated to capture the most relevant confounders and effect modifiers on different causal pathways. The individual-specific interventional direct and indirect effects are derived on the scale of the logarithm of hazards and survival function. A Bayesian approach with an efficient Markov chain Monte Carlo algorithm is developed to estimate the conditional interventional effects through the Monte Carlo implementation of the mediation formula. Simulation studies are conducted to verify the empirical performance of the proposed method. An application to the ACTG175 study further demonstrates the method's utility in causal discovery and heterogeneity quantification.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.