Scale-Aware Super-Resolution Network With Dual Affinity Learning for Lesion Segmentation From Medical Images.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Luyang Luo, Yanwen Li, Zhizhong Chai, Huangjing Lin, Pheng-Ann Heng, Hao Chen
{"title":"Scale-Aware Super-Resolution Network With Dual Affinity Learning for Lesion Segmentation From Medical Images.","authors":"Luyang Luo, Yanwen Li, Zhizhong Chai, Huangjing Lin, Pheng-Ann Heng, Hao Chen","doi":"10.1109/TNNLS.2024.3477947","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) have shown remarkable progress in medical image segmentation. However, the lesion segmentation remains a challenge to state-of-the-art CNN-based algorithms due to the variance in scales and shapes. On the one hand, tiny lesions are hard to delineate precisely from the medical images which are often of low resolutions. On the other hand, segmenting large-size lesions requires large receptive fields, which exacerbates the first challenge. In this article, we present a scale-aware super-resolution (SR) network to adaptively segment lesions of various sizes from low-resolution (LR) medical images. Our proposed network contains dual branches to simultaneously conduct lesion mask SR (LMSR) and lesion image SR (LISR). Meanwhile, we introduce scale-aware dilated convolution (SDC) blocks into the multitask decoders to adaptively adjust the receptive fields of the convolutional kernels according to the lesion sizes. To guide the segmentation branch to learn from richer high-resolution (HR) features, we propose a feature affinity (FA) module and a scale affinity (SA) module to enhance the multitask learning of the dual branches. On multiple challenging lesion segmentation datasets, our proposed network achieved consistent improvements compared with other state-of-the-art methods. Code will be available at: https://github.com/poiuohke/SASR_Net.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2024.3477947","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) have shown remarkable progress in medical image segmentation. However, the lesion segmentation remains a challenge to state-of-the-art CNN-based algorithms due to the variance in scales and shapes. On the one hand, tiny lesions are hard to delineate precisely from the medical images which are often of low resolutions. On the other hand, segmenting large-size lesions requires large receptive fields, which exacerbates the first challenge. In this article, we present a scale-aware super-resolution (SR) network to adaptively segment lesions of various sizes from low-resolution (LR) medical images. Our proposed network contains dual branches to simultaneously conduct lesion mask SR (LMSR) and lesion image SR (LISR). Meanwhile, we introduce scale-aware dilated convolution (SDC) blocks into the multitask decoders to adaptively adjust the receptive fields of the convolutional kernels according to the lesion sizes. To guide the segmentation branch to learn from richer high-resolution (HR) features, we propose a feature affinity (FA) module and a scale affinity (SA) module to enhance the multitask learning of the dual branches. On multiple challenging lesion segmentation datasets, our proposed network achieved consistent improvements compared with other state-of-the-art methods. Code will be available at: https://github.com/poiuohke/SASR_Net.

利用双重亲和力学习的规模感知超分辨率网络用于医学图像的病变分割
卷积神经网络(CNN)在医学图像分割方面取得了显著进展。然而,由于尺度和形状的差异,病变分割对于基于 CNN 的最先进算法来说仍是一项挑战。一方面,微小病变很难从分辨率通常较低的医学图像中精确划分出来。另一方面,分割大尺寸病变需要较大的感受野,这加剧了第一个挑战。在本文中,我们提出了一种规模感知超分辨率(SR)网络,用于从低分辨率(LR)医学图像中自适应地分割不同大小的病变。我们提出的网络包含双分支,可同时进行病变掩膜超分辨率(LMSR)和病变图像超分辨率(LISR)。同时,我们在多任务解码器中引入了尺度感知扩张卷积(SDC)块,以根据病变大小自适应地调整卷积核的感受野。为了引导分割分支学习更丰富的高分辨率(HR)特征,我们提出了特征亲和(FA)模块和尺度亲和(SA)模块,以增强双分支的多任务学习。在多个具有挑战性的病变分割数据集上,我们提出的网络与其他最先进的方法相比取得了一致的改进。代码见:https://github.com/poiuohke/SASR_Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信