An optimized protocol for quality control of gene therapy vectors using nanopore direct RNA sequencing.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kathleen Zeglinski, Christian Montellese, Matthew E Ritchie, Monther Alhamdoosh, Cédric Vonarburg, Rory Bowden, Monika Jordi, Quentin Gouil, Florian Aeschimann, Arthur Hsu
{"title":"An optimized protocol for quality control of gene therapy vectors using nanopore direct RNA sequencing.","authors":"Kathleen Zeglinski, Christian Montellese, Matthew E Ritchie, Monther Alhamdoosh, Cédric Vonarburg, Rory Bowden, Monika Jordi, Quentin Gouil, Florian Aeschimann, Arthur Hsu","doi":"10.1101/gr.279405.124","DOIUrl":null,"url":null,"abstract":"<p><p>Despite recent advances made toward improving the efficacy of lentiviral gene therapies, a sizeable proportion of produced vector contains an incomplete and thus potentially nonfunctional RNA genome. This can undermine gene delivery by the lentivirus as well as increase manufacturing costs and must be improved to facilitate the widespread clinical implementation of lentiviral gene therapies. Here, we compare three long-read sequencing technologies for their ability to detect issues in vector design and determine nanopore direct RNA sequencing to be the most powerful. We show how this approach identifies and quantifies incomplete RNA caused by cryptic splicing and polyadenylation sites, including a potential cryptic polyadenylation site in the widely used Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). Using artificial polyadenylation of the lentiviral RNA, we also identify multiple hairpin-associated truncations in the analyzed lentiviral vectors (LVs), which account for most of the detected RNA fragments. Finally, we show that these insights can be used for the optimization of LV design. In summary, nanopore direct RNA sequencing is a powerful tool for the quality control and optimization of LVs, which may help to improve lentivirus manufacturing and thus the development of higher quality lentiviral gene therapies.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279405.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite recent advances made toward improving the efficacy of lentiviral gene therapies, a sizeable proportion of produced vector contains an incomplete and thus potentially nonfunctional RNA genome. This can undermine gene delivery by the lentivirus as well as increase manufacturing costs and must be improved to facilitate the widespread clinical implementation of lentiviral gene therapies. Here, we compare three long-read sequencing technologies for their ability to detect issues in vector design and determine nanopore direct RNA sequencing to be the most powerful. We show how this approach identifies and quantifies incomplete RNA caused by cryptic splicing and polyadenylation sites, including a potential cryptic polyadenylation site in the widely used Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). Using artificial polyadenylation of the lentiviral RNA, we also identify multiple hairpin-associated truncations in the analyzed lentiviral vectors (LVs), which account for most of the detected RNA fragments. Finally, we show that these insights can be used for the optimization of LV design. In summary, nanopore direct RNA sequencing is a powerful tool for the quality control and optimization of LVs, which may help to improve lentivirus manufacturing and thus the development of higher quality lentiviral gene therapies.

利用纳米孔直接 RNA 测序对基因治疗载体进行质量控制的优化方案。
尽管最近在提高慢病毒基因疗法的疗效方面取得了进展,但生产的载体中仍有相当一部分含有不完整的 RNA 基因组,因此可能无法发挥作用。这不仅会影响慢病毒的基因传递,还会增加生产成本,因此必须加以改进,以促进慢病毒基因疗法在临床上的广泛应用。在这里,我们比较了三种长读测序技术检测载体设计问题的能力,并确定纳米孔直接 RNA 测序技术是最强大的。我们展示了这种方法如何识别和量化由隐性剪接和多腺苷酸化位点引起的不完整 RNA,包括广泛使用的伍德查克肝炎病毒转录后调控元件(WPRE)中的潜在隐性多腺苷酸化位点。通过对慢病毒 RNA 进行人工多聚腺苷酸化,我们还在所分析的慢病毒载体(LV)中发现了多个发夹相关截断点,这些截断点占检测到的 RNA 片段的大部分。最后,我们展示了这些见解可用于优化 LV 设计。总之,纳米孔直接 RNA 测序是质量控制和优化 LV 的有力工具,有助于改善慢病毒的生产,从而开发出更高质量的慢病毒基因疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信