Giada Moresco, Ornella Rondinone, Alessia Mauri, Rita Gorgoglione, Daniela Maria Grazia Graziani, Michal Dziuback, Monica Rosa Miozzo, Silvia Maria Sirchia, Luca Pietrogrande, Angela Peron, Laura Fontana
{"title":"A novel frameshift TBX4 variant in a family with ischio-coxo-podo-patellar syndrome and variable severity.","authors":"Giada Moresco, Ornella Rondinone, Alessia Mauri, Rita Gorgoglione, Daniela Maria Grazia Graziani, Michal Dziuback, Monica Rosa Miozzo, Silvia Maria Sirchia, Luca Pietrogrande, Angela Peron, Laura Fontana","doi":"10.1007/s13258-024-01589-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Congenital anomalies of the knee are a spectrum of rare disorders with wide clinical and genetic variability, which are mainly due to the complex processes underlying knee development. Despite progresses in understanding pathomechanisms and associated genes, many patients remain undiagnosed.</p><p><strong>Objective: </strong>To uncover the genetic bases of a congenital patellar dislocation affecting multiple family members with variable severity.</p><p><strong>Methods: </strong>We performed ES in the proband and his father, both showing bilateral patellar dislocation, his sister with a milder similar condition, and his unaffected mother. Sanger sequencing was then performed in the proband's brother and paternal aunt, both affected as well.</p><p><strong>Results: </strong>ES and Sanger sequencing identified the presence of the novel heterozygous frameshift mutation c.735delT in the TBX4 gene in all affected family members. TBX4 is associated with autosomal dominant ischio-coxo-podo-patellar syndrome with/without pulmonary arterial hypertension (ICPPS, #147891), reaching a diagnosis in the family. Intrafamilial clinical heterogeneity suggests that other factors might be involved, such as additional variants in TBX4 or in other modifier genes. Interestingly, we identified three additional variants in the TBX4 gene in the proband only, whose phenotype is more severe. Despite being classified as benign, one of these variants is predicted to disrupt a splicing protein binding site, and may therefore affect TBX4 alternative splicing, accounting for the more severe phenotype of the proband.</p><p><strong>Conclusion: </strong>We expand and further delineate the genotypic and phenotypic spectrum of ICPPS. Further studies are necessary to shed light on the potential effect of this variant and on the variable phenotypic expressivity of TBX4-related phenotypes.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01589-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Congenital anomalies of the knee are a spectrum of rare disorders with wide clinical and genetic variability, which are mainly due to the complex processes underlying knee development. Despite progresses in understanding pathomechanisms and associated genes, many patients remain undiagnosed.
Objective: To uncover the genetic bases of a congenital patellar dislocation affecting multiple family members with variable severity.
Methods: We performed ES in the proband and his father, both showing bilateral patellar dislocation, his sister with a milder similar condition, and his unaffected mother. Sanger sequencing was then performed in the proband's brother and paternal aunt, both affected as well.
Results: ES and Sanger sequencing identified the presence of the novel heterozygous frameshift mutation c.735delT in the TBX4 gene in all affected family members. TBX4 is associated with autosomal dominant ischio-coxo-podo-patellar syndrome with/without pulmonary arterial hypertension (ICPPS, #147891), reaching a diagnosis in the family. Intrafamilial clinical heterogeneity suggests that other factors might be involved, such as additional variants in TBX4 or in other modifier genes. Interestingly, we identified three additional variants in the TBX4 gene in the proband only, whose phenotype is more severe. Despite being classified as benign, one of these variants is predicted to disrupt a splicing protein binding site, and may therefore affect TBX4 alternative splicing, accounting for the more severe phenotype of the proband.
Conclusion: We expand and further delineate the genotypic and phenotypic spectrum of ICPPS. Further studies are necessary to shed light on the potential effect of this variant and on the variable phenotypic expressivity of TBX4-related phenotypes.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.