Methodological considerations in calculating the minimal clinically important change score for the core outcome measures index (COMI): insights from a large single-centre spine surgery registry.
Andrea Cina, Jacopo Vitale, Daniel Haschtmann, Markus Loibl, Tamas F Fekete, Frank Kleinstück, Fabio Galbusera, Catherine R Jutzeler, Anne F Mannion
{"title":"Methodological considerations in calculating the minimal clinically important change score for the core outcome measures index (COMI): insights from a large single-centre spine surgery registry.","authors":"Andrea Cina, Jacopo Vitale, Daniel Haschtmann, Markus Loibl, Tamas F Fekete, Frank Kleinstück, Fabio Galbusera, Catherine R Jutzeler, Anne F Mannion","doi":"10.1007/s00586-024-08537-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The Minimal Clinically Important Change (MCIC) is used in conjunction with Patient-Reported Outcome Measures (PROMs) to determine the clinical relevance of changes in health status. MCIC measures a change within the same person or group over time. This study aims to evaluate the variability in computing MCIC for the Core Outcome Measure Index (COMI) using different methods.</p><p><strong>Methods: </strong>Data from a spine centre in Switzerland were used to evaluate variations in MCIC for the COMI score. Distribution-based and anchor-based methods (predictive and nonpredictive) were applied. Bayesian bootstrap estimated confidence intervals.</p><p><strong>Results: </strong>From 27,003 cases, 9821 met the inclusion criteria. Distribution-based methods yielded MCIC values from 0.4 to 1.4. Anchor-based methods showed more variability, with MCIC values from 1.5 to 4.9. Predictive anchor-based methods also provided variable MCIC values for improvement (0.3-2.4), with high sensitivity and specificity.</p><p><strong>Discussion: </strong>MCIC calculation methods produce varying values, emphasizing careful method selection. Distribution-based methods likely measure minimal detectable change, while non-predictive anchor-based methods can yield high MCIC values due to group averaging. Predictive anchor-based methods offer more stable and clinically relevant MCIC values for improvement but are affected by prevalence and reliability corrections.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":"4415-4425"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-024-08537-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The Minimal Clinically Important Change (MCIC) is used in conjunction with Patient-Reported Outcome Measures (PROMs) to determine the clinical relevance of changes in health status. MCIC measures a change within the same person or group over time. This study aims to evaluate the variability in computing MCIC for the Core Outcome Measure Index (COMI) using different methods.
Methods: Data from a spine centre in Switzerland were used to evaluate variations in MCIC for the COMI score. Distribution-based and anchor-based methods (predictive and nonpredictive) were applied. Bayesian bootstrap estimated confidence intervals.
Results: From 27,003 cases, 9821 met the inclusion criteria. Distribution-based methods yielded MCIC values from 0.4 to 1.4. Anchor-based methods showed more variability, with MCIC values from 1.5 to 4.9. Predictive anchor-based methods also provided variable MCIC values for improvement (0.3-2.4), with high sensitivity and specificity.
Discussion: MCIC calculation methods produce varying values, emphasizing careful method selection. Distribution-based methods likely measure minimal detectable change, while non-predictive anchor-based methods can yield high MCIC values due to group averaging. Predictive anchor-based methods offer more stable and clinically relevant MCIC values for improvement but are affected by prevalence and reliability corrections.
期刊介绍:
"European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts.
Official publication of EUROSPINE, The Spine Society of Europe