Ziren Kong, Zhu Li, Xi-Yang Cui, Jian Wang, Mengxin Xu, Yang Liu, Junyi Chen, Song Ni, Zongmin Zhang, Xiaowei Fan, Jiazhao Huang, Yansong Lin, Yuning Sun, Yuqin He, Xinfeng Lin, Tianyu Meng, Han Li, Yixuan Song, Boshizhang Peng, Changming An, Chenyan Gao, Nan Li, Chen Liu, Yiming Zhu, Zhi Yang, Zhibo Liu, Shaoyan Liu
{"title":"CTR-FAPI PET Enables Precision Management of Medullary Thyroid Carcinoma.","authors":"Ziren Kong, Zhu Li, Xi-Yang Cui, Jian Wang, Mengxin Xu, Yang Liu, Junyi Chen, Song Ni, Zongmin Zhang, Xiaowei Fan, Jiazhao Huang, Yansong Lin, Yuning Sun, Yuqin He, Xinfeng Lin, Tianyu Meng, Han Li, Yixuan Song, Boshizhang Peng, Changming An, Chenyan Gao, Nan Li, Chen Liu, Yiming Zhu, Zhi Yang, Zhibo Liu, Shaoyan Liu","doi":"10.1158/2159-8290.CD-24-0897","DOIUrl":null,"url":null,"abstract":"<p><p>Medullary thyroid carcinoma (MTC) can only be cured through the excision of all metastatic lesions, but current clinical practice fails to localize the disease in 29% to 60% of patients. Previously, we developed a fibroblast activation protein inhibitor (FAPI)-based covalent targeted radioligand (CTR) for improved detection sensitivity and accuracy. In this first-in-class clinical trial, we head-to-head compared [68Ga]Ga-CTR-FAPI PET-CT and [18F]fluorodeoxyglucose ([18F]FDG) PET-CT in 50 patients with MTC. The primary endpoint was the patient-based detection rate, with [68Ga]Ga-CTR-FAPI exhibiting higher detection than [18F]FDG (98% vs. 66%, P = 0.0002). This improved detection was attributed to increased tumor uptake (maximum standardized uptake value = 11.71 ± 9.16 vs. 2.55 ± 1.73, P < 0.0001). Diagnostic accuracy, validated on lesions with gold-standard pathology, was greater for [68Ga]Ga-CTR-FAPI compared with [18F]FDG (96.7% vs. 43.3%, P < 0.0001). Notably, the management of 32% of patients was altered following [68Ga]Ga-CTR-FAPI PET-CT, and the surgical plan was changed for 66.7% of patients. Overall, [68Ga]Ga-CTR-FAPI PET-CT provided superior detection and diagnostic accuracy compared with [18F]FDG PET-CT, enabling precision management of patients with MTC. Significance: In this first-in-class clinical trial of CTR, [68Ga]Ga-CTR-FAPI demonstrated an improved patient-based detection rate (98%), tumor uptake (maximum standardized uptake value = 11.71 ± 9.16), and pathology-validated diagnostic accuracy (96.7%) compared with the currently approved method in MTC treatment. It directly altered management in 32% of patients, enabling precision diagnosis and management of MTC. See related commentary by Witney, p. 264.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"316-328"},"PeriodicalIF":29.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-0897","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Medullary thyroid carcinoma (MTC) can only be cured through the excision of all metastatic lesions, but current clinical practice fails to localize the disease in 29% to 60% of patients. Previously, we developed a fibroblast activation protein inhibitor (FAPI)-based covalent targeted radioligand (CTR) for improved detection sensitivity and accuracy. In this first-in-class clinical trial, we head-to-head compared [68Ga]Ga-CTR-FAPI PET-CT and [18F]fluorodeoxyglucose ([18F]FDG) PET-CT in 50 patients with MTC. The primary endpoint was the patient-based detection rate, with [68Ga]Ga-CTR-FAPI exhibiting higher detection than [18F]FDG (98% vs. 66%, P = 0.0002). This improved detection was attributed to increased tumor uptake (maximum standardized uptake value = 11.71 ± 9.16 vs. 2.55 ± 1.73, P < 0.0001). Diagnostic accuracy, validated on lesions with gold-standard pathology, was greater for [68Ga]Ga-CTR-FAPI compared with [18F]FDG (96.7% vs. 43.3%, P < 0.0001). Notably, the management of 32% of patients was altered following [68Ga]Ga-CTR-FAPI PET-CT, and the surgical plan was changed for 66.7% of patients. Overall, [68Ga]Ga-CTR-FAPI PET-CT provided superior detection and diagnostic accuracy compared with [18F]FDG PET-CT, enabling precision management of patients with MTC. Significance: In this first-in-class clinical trial of CTR, [68Ga]Ga-CTR-FAPI demonstrated an improved patient-based detection rate (98%), tumor uptake (maximum standardized uptake value = 11.71 ± 9.16), and pathology-validated diagnostic accuracy (96.7%) compared with the currently approved method in MTC treatment. It directly altered management in 32% of patients, enabling precision diagnosis and management of MTC. See related commentary by Witney, p. 264.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.