Mohd Yaseen Malik, Fei Guo, Aman Asif-Malik, Vasileios Eftychidis, Nikolaos Barkas, Elena Eliseeva, Kerstin N. Timm, Aleksandra Wolska, David Bergin, Barbara Zonta, Veronika Ratz-Wirsching, Stephan von Hörsten, Mark E. Walton, Peter J. Magill, Claus Nerlov, Liliana Minichiello
{"title":"Impaired striatal glutathione–ascorbate metabolism induces transient dopamine increase and motor dysfunction","authors":"Mohd Yaseen Malik, Fei Guo, Aman Asif-Malik, Vasileios Eftychidis, Nikolaos Barkas, Elena Eliseeva, Kerstin N. Timm, Aleksandra Wolska, David Bergin, Barbara Zonta, Veronika Ratz-Wirsching, Stephan von Hörsten, Mark E. Walton, Peter J. Magill, Claus Nerlov, Liliana Minichiello","doi":"10.1038/s42255-024-01155-z","DOIUrl":null,"url":null,"abstract":"<p>Identifying initial triggering events in neurodegenerative disorders is critical to developing preventive therapies. In Huntington’s disease (HD), hyperdopaminergia—probably triggered by the dysfunction of the most affected neurons, indirect pathway spiny projection neurons (iSPNs)—is believed to induce hyperkinesia, an early stage HD symptom. However, how this change arises and contributes to HD pathogenesis is unclear. Here, we demonstrate that genetic disruption of iSPNs function by <i>Ntrk2/Trkb</i> deletion in mice results in increased striatal dopamine and midbrain dopaminergic neurons, preceding hyperkinetic dysfunction. Transcriptomic analysis of iSPNs at the pre-symptomatic stage showed de-regulation of metabolic pathways, including upregulation of <i>Gsto2</i>, encoding glutathione S-transferase omega-2 (GSTO2). Selectively reducing <i>Gsto2</i> in iSPNs in vivo effectively prevented dopaminergic dysfunction and halted the onset and progression of hyperkinetic symptoms. This study uncovers a functional link between altered iSPN BDNF-TrkB signalling, glutathione–ascorbate metabolism and hyperdopaminergic state, underscoring the vital role of GSTO2 in maintaining dopamine balance.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"75 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-024-01155-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying initial triggering events in neurodegenerative disorders is critical to developing preventive therapies. In Huntington’s disease (HD), hyperdopaminergia—probably triggered by the dysfunction of the most affected neurons, indirect pathway spiny projection neurons (iSPNs)—is believed to induce hyperkinesia, an early stage HD symptom. However, how this change arises and contributes to HD pathogenesis is unclear. Here, we demonstrate that genetic disruption of iSPNs function by Ntrk2/Trkb deletion in mice results in increased striatal dopamine and midbrain dopaminergic neurons, preceding hyperkinetic dysfunction. Transcriptomic analysis of iSPNs at the pre-symptomatic stage showed de-regulation of metabolic pathways, including upregulation of Gsto2, encoding glutathione S-transferase omega-2 (GSTO2). Selectively reducing Gsto2 in iSPNs in vivo effectively prevented dopaminergic dysfunction and halted the onset and progression of hyperkinetic symptoms. This study uncovers a functional link between altered iSPN BDNF-TrkB signalling, glutathione–ascorbate metabolism and hyperdopaminergic state, underscoring the vital role of GSTO2 in maintaining dopamine balance.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.