Drifts of the substellar points of the TRAPPIST-1 planets

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Alexandre Revol, Émeline Bolmont, Mariana Sastre, Gabriel Tobie, Anne-Sophie Libert, Mathilde Kervazo, Sergi Blanco-Cuaresma
{"title":"Drifts of the substellar points of the TRAPPIST-1 planets","authors":"Alexandre Revol, Émeline Bolmont, Mariana Sastre, Gabriel Tobie, Anne-Sophie Libert, Mathilde Kervazo, Sergi Blanco-Cuaresma","doi":"10.1051/0004-6361/202451532","DOIUrl":null,"url":null,"abstract":"Accurate modeling of tidal interactions is crucial for interpreting recent JWST observations of the thermal emissions of TRAPPIST-1 b and c and for characterizing the surface conditions and potential habitability of the other planets in the system. Indeed, the rotation state of the planets, driven by tidal forces, significantly influences the heat redistribution regime. Due to their proximity to their host star and the estimated age of the system, the TRAPPIST-1 planets are commonly assumed to be in a synchronization state. In this work, we present the recent implementation of the co-planar tidal torque and forces equations within the formalism of Kaula in the <i>N<i/>-body code Posidonius. This enables us to explore the hypothesis of synchronization using a tidal model well suited to rocky planets. We studied the rotational state of each planet by taking into account their multi-layer internal structure computed with the code Burnman. Our simulations show that the TRAPPIST-1 planets are not perfectly synchronized but oscillate around the synchronization state. Planet-planet interactions lead to strong variations on the mean motion and tides fail to keep the spin synchronized with respect to the mean motion. As a result, the substellar point of each planet experiences short oscillations and long-timescale drifts that lead the planets to achieve a synodic day with periods varying from 55 years to 290 years depending on the planet.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"101 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451532","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate modeling of tidal interactions is crucial for interpreting recent JWST observations of the thermal emissions of TRAPPIST-1 b and c and for characterizing the surface conditions and potential habitability of the other planets in the system. Indeed, the rotation state of the planets, driven by tidal forces, significantly influences the heat redistribution regime. Due to their proximity to their host star and the estimated age of the system, the TRAPPIST-1 planets are commonly assumed to be in a synchronization state. In this work, we present the recent implementation of the co-planar tidal torque and forces equations within the formalism of Kaula in the N-body code Posidonius. This enables us to explore the hypothesis of synchronization using a tidal model well suited to rocky planets. We studied the rotational state of each planet by taking into account their multi-layer internal structure computed with the code Burnman. Our simulations show that the TRAPPIST-1 planets are not perfectly synchronized but oscillate around the synchronization state. Planet-planet interactions lead to strong variations on the mean motion and tides fail to keep the spin synchronized with respect to the mean motion. As a result, the substellar point of each planet experiences short oscillations and long-timescale drifts that lead the planets to achieve a synodic day with periods varying from 55 years to 290 years depending on the planet.
TRAPPIST-1 行星的星下点漂移
潮汐相互作用的精确建模对于解释 JWST 最近观测到的 TRAPPIST-1 b 和 c 的热辐射以及描述该系统中其他行星的表面状况和潜在可居住性至关重要。事实上,在潮汐力的驱动下,行星的自转状态对热量再分配机制有很大影响。由于TRAPPIST-1行星与主恒星的距离很近,而且该系统的估计年龄较大,因此通常假定它们处于同步状态。在这项工作中,我们介绍了最近在 N-body 代码 Posidonius 中以 Kaula 的形式实现共面潮汐力矩和力方程的情况。这使我们能够使用一个非常适合岩石行星的潮汐模型来探索同步假说。我们在研究每颗行星的旋转状态时,都考虑到了它们的多层内部结构,这些内部结构是用 Burnman 代码计算出来的。我们的模拟结果表明,TRAPPIST-1 行星并非完全同步,而是在同步状态附近摆动。行星与行星之间的相互作用导致了平均运动的强烈变化,潮汐也无法使自旋与平均运动保持同步。因此,每颗行星的星下点都会经历短时间的振荡和长时间的漂移,导致行星达到同步日,周期从 55 年到 290 年不等,视行星而定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信