{"title":"A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning","authors":"Yichen Zhou, Wenhe Han, Heng Zhou","doi":"10.1007/s43684-024-00078-6","DOIUrl":null,"url":null,"abstract":"<div><p>Customer maintenance is of vital importance to the enterprise management. Valuable assessment and efficient prediction for customer ordering behavior can offer better decision-making and reduce business costs significantly. According to existing studies about customer behavior regularity segment and demand prediction most focus on e-commerce and other fields with large amount of data, making them not suitable for small enterprises and data features like sparsity and outliers are not mined when doing regularity quantification. Additionally, more and more complex network structures for demand prediction are proposed, which builds on the assumption that all the samples have predictive value, ignoring the fine-grained analysis of different time series regularity with high cost. To deal with the above issues, a multi-step regularity assessment and joint prediction system for ordering time series is proposed. For extracting features, comprehensive assessment of customer regularity based on entropy weight method with the result of predictability quantification using K-Means clustering algorithm, real entropy, LZW algorithm and anomaly detection adopting Isolation Forest algorithm not only gives an objective result to ‘how high the regularity of customers is’, filling the gap in the field of regularity quantification, but also provides a theoretical basis for demand prediction models selection. Prediction models: Random Forest regression, XGBoost, CNN and LSTM network are experimented with sMAPE and MSLE for performance evaluation to verify the effectiveness of the proposed regularity quantitation method. Moreover, a merged CNN-BiLSTM neural network model is established for predicting those customers with low regularity and difficult to predict by traditional machine leaning algorithms, which performs better on the data set compared to others. Random Forest is still used for prediction of customers with high regularity due to its high training efficiency. Finally, the results of prediction, regularity quantification, and classification are output from the intelligent system, which is capable of providing scientific basis for corporate strategy decision and has highly extendibility in other enterprises and fields for follow-up research.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00078-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00078-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Customer maintenance is of vital importance to the enterprise management. Valuable assessment and efficient prediction for customer ordering behavior can offer better decision-making and reduce business costs significantly. According to existing studies about customer behavior regularity segment and demand prediction most focus on e-commerce and other fields with large amount of data, making them not suitable for small enterprises and data features like sparsity and outliers are not mined when doing regularity quantification. Additionally, more and more complex network structures for demand prediction are proposed, which builds on the assumption that all the samples have predictive value, ignoring the fine-grained analysis of different time series regularity with high cost. To deal with the above issues, a multi-step regularity assessment and joint prediction system for ordering time series is proposed. For extracting features, comprehensive assessment of customer regularity based on entropy weight method with the result of predictability quantification using K-Means clustering algorithm, real entropy, LZW algorithm and anomaly detection adopting Isolation Forest algorithm not only gives an objective result to ‘how high the regularity of customers is’, filling the gap in the field of regularity quantification, but also provides a theoretical basis for demand prediction models selection. Prediction models: Random Forest regression, XGBoost, CNN and LSTM network are experimented with sMAPE and MSLE for performance evaluation to verify the effectiveness of the proposed regularity quantitation method. Moreover, a merged CNN-BiLSTM neural network model is established for predicting those customers with low regularity and difficult to predict by traditional machine leaning algorithms, which performs better on the data set compared to others. Random Forest is still used for prediction of customers with high regularity due to its high training efficiency. Finally, the results of prediction, regularity quantification, and classification are output from the intelligent system, which is capable of providing scientific basis for corporate strategy decision and has highly extendibility in other enterprises and fields for follow-up research.