Three-party quantum dialogue based on Grover’s algorithm with identity dual authentication

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Tian-Jiao Pan, Ri-Gui Zhou, Xiao-Xue Zhang
{"title":"Three-party quantum dialogue based on Grover’s algorithm with identity dual authentication","authors":"Tian-Jiao Pan,&nbsp;Ri-Gui Zhou,&nbsp;Xiao-Xue Zhang","doi":"10.1007/s11128-024-04570-z","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the study of quantum dialogue and quantum identity authentication, this paper proposes an improved three-party quantum dialogue (3P-QD) with dual authentication of identity protocol based on quantum search algorithm (QSA) and bidirectional verification of user identity. The protocol utilizes two-particle states as quantum resources to achieve bidirectional transmission of information in the channel and uses the non-cloning theorem of quantum mechanics, which ensures that sequences of quantum bits can be reliably and securely guaranteed during transmission. The characteristics of the QSA in the two-qubit are applied to the target state search process of this 3P-QD protocol, which can accomplish the task of safely transferring two bits of information between the two communicating parties. In addition, in the communication, one of the fixed third party is not only a communicating party, but also acts as a controller for the other two parties. Meanwhile, in order to ensure the security and integrity of the communication, a bidirectional authentication step is added to the communication process, which well solves the problem of eavesdropping. Based on the above features, compared with the existing protocols, this protocol has better advantages.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04570-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the study of quantum dialogue and quantum identity authentication, this paper proposes an improved three-party quantum dialogue (3P-QD) with dual authentication of identity protocol based on quantum search algorithm (QSA) and bidirectional verification of user identity. The protocol utilizes two-particle states as quantum resources to achieve bidirectional transmission of information in the channel and uses the non-cloning theorem of quantum mechanics, which ensures that sequences of quantum bits can be reliably and securely guaranteed during transmission. The characteristics of the QSA in the two-qubit are applied to the target state search process of this 3P-QD protocol, which can accomplish the task of safely transferring two bits of information between the two communicating parties. In addition, in the communication, one of the fixed third party is not only a communicating party, but also acts as a controller for the other two parties. Meanwhile, in order to ensure the security and integrity of the communication, a bidirectional authentication step is added to the communication process, which well solves the problem of eavesdropping. Based on the above features, compared with the existing protocols, this protocol has better advantages.

Abstract Image

基于格罗弗算法的三方量子对话与身份双重认证
本文在对量子对话和量子身份认证研究的基础上,提出了一种基于量子搜索算法(QSA)的改进型三方量子对话(3P-QD)双重身份认证协议,并对用户身份进行双向验证。该协议利用双粒子态作为量子资源,实现信息在信道中的双向传输,并利用量子力学的非克隆定理,确保量子比特序列在传输过程中能够得到可靠、安全的保证。将双量子比特中的 QSA 特性应用于该 3P-QD 协议的目标状态搜索过程,可以完成在通信双方之间安全传输两个比特信息的任务。此外,在通信过程中,其中一个固定的第三方不仅是通信方,同时也是另外两方的控制方。同时,为了确保通信的安全性和完整性,在通信过程中增加了双向认证步骤,很好地解决了窃听问题。基于以上特点,与现有协议相比,该协议具有更好的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信