Decoupling of modes for low regularity hyperbolic systems

IF 1.4 3区 数学 Q1 MATHEMATICS
Hart F. Smith
{"title":"Decoupling of modes for low regularity hyperbolic systems","authors":"Hart F. Smith","doi":"10.1007/s13324-024-00982-3","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the coupling operator between distinct modes of a second-order hyperbolic system is smoothing of degree one, where we assume that the eigenvalues of the symbol are of constant rank, and that the coefficients of the system have bounded derivatives of second order. An important example is the wave equation for linear isotropic elasticity, where our assumption states that the Lamé parameters and mass density have bounded derivatives of second order. This extends a result for the elastic wave equation established by Brytik, et.al.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00982-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the coupling operator between distinct modes of a second-order hyperbolic system is smoothing of degree one, where we assume that the eigenvalues of the symbol are of constant rank, and that the coefficients of the system have bounded derivatives of second order. An important example is the wave equation for linear isotropic elasticity, where our assumption states that the Lamé parameters and mass density have bounded derivatives of second order. This extends a result for the elastic wave equation established by Brytik, et.al.

低正则双曲系统的模式解耦
我们证明了二阶双曲系统不同模态之间的耦合算子是阶一平滑的,我们假设符号的特征值是常阶的,并且系统的系数具有有界的二阶导数。一个重要的例子是线性各向同性弹性的波方程,我们假设拉梅参数和质量密度具有有界的二阶导数。这扩展了 Brytik 等人建立的弹性波方程的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信