From Incommensurate Bilayer Heterostructures to Allen–Cahn: An Exact Thermodynamic Limit

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Michael Hott, Alexander B. Watson, Mitchell Luskin
{"title":"From Incommensurate Bilayer Heterostructures to Allen–Cahn: An Exact Thermodynamic Limit","authors":"Michael Hott,&nbsp;Alexander B. Watson,&nbsp;Mitchell Luskin","doi":"10.1007/s00205-024-02043-2","DOIUrl":null,"url":null,"abstract":"<div><p>We give a complete and rigorous derivation of the mechanical energy for twisted 2D bilayer heterostructures without any approximation beyond the existence of an empirical many-body site energy. Our results apply to both the continuous and discontinuous continuum limit. Approximating the intralayer Cauchy–Born energy by linear elasticity theory and assuming an interlayer coupling via pair potentials, our model reduces to a modified Allen–Cahn functional. We rigorously control the error, and, in the case of sufficiently smooth lattice displacements, provide a rate of convergence for twist angles satisfying a Diophantine condition.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02043-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We give a complete and rigorous derivation of the mechanical energy for twisted 2D bilayer heterostructures without any approximation beyond the existence of an empirical many-body site energy. Our results apply to both the continuous and discontinuous continuum limit. Approximating the intralayer Cauchy–Born energy by linear elasticity theory and assuming an interlayer coupling via pair potentials, our model reduces to a modified Allen–Cahn functional. We rigorously control the error, and, in the case of sufficiently smooth lattice displacements, provide a rate of convergence for twist angles satisfying a Diophantine condition.

从不相称双层异质结构到艾伦-卡恩:精确的热力学极限
我们对扭曲的二维双层异质结构的机械能进行了完整而严格的推导,除了存在经验多体位能之外,没有任何近似值。我们的结果既适用于连续极限,也适用于非连续极限。通过线性弹性理论对层内 Cauchy-Born 能量进行近似,并假定层间耦合是通过对势实现的,我们的模型简化为修正的 Allen-Cahn 函数。我们严格控制误差,并在晶格位移足够平滑的情况下,提供了满足二阶条件的扭角收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信