Phase space properties of cosmological models in f(Q, T) gravity

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Shivangi Rathore, S. Surendra Singh, Shah Muhammad, Euaggelos E. Zotos
{"title":"Phase space properties of cosmological models in f(Q, T) gravity","authors":"Shivangi Rathore,&nbsp;S. Surendra Singh,&nbsp;Shah Muhammad,&nbsp;Euaggelos E. Zotos","doi":"10.1140/epjc/s10052-024-13464-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Weyl type <i>f</i>(<i>Q</i>, <i>T</i>) gravity is the modification of <i>f</i>(<i>Q</i>) gravity and <i>f</i>(<i>Q</i>, <i>T</i>) theories, where non-metricity is denoted by <i>Q</i> and <i>T</i> is the trace of the energy–momentum tensor. Together with a geometric explanation for dark energy, the theory can provide an exact interpretation of the transformation of the late-time Universe and the observable data. In this study, we present an accelerated cosmic model of the Universe in <i>f</i>(<i>Q</i>, <i>T</i>) gravity. We consider the model of <i>f</i>(<i>Q</i>, <i>T</i>) gravity as, <span>\\(f(Q,T) = -Q+\\phi (Q,T)\\)</span>. We examine the energy condition for the model of <i>f</i>(<i>Q</i>, <i>T</i>) gravity and find out that our model satisfies the null and strong energy conditions at the same time, it violates the weak and dominant energy conditions. After that, we perform the phase-space study of our cosmological model with and without interaction independently. In case of the absence of interaction, we get six critical points out of which three critical points are stable critical points while the rest three critical points are saddle. When we perform the stability analysis in the presence of interaction, we get three critical points out of which one critical point is stable while the rest two are saddle points. The phase-plot analysis also shows the cosmological models in <i>f</i>(<i>Q</i>, <i>T</i>) gravity.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13464-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13464-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The Weyl type f(QT) gravity is the modification of f(Q) gravity and f(QT) theories, where non-metricity is denoted by Q and T is the trace of the energy–momentum tensor. Together with a geometric explanation for dark energy, the theory can provide an exact interpretation of the transformation of the late-time Universe and the observable data. In this study, we present an accelerated cosmic model of the Universe in f(QT) gravity. We consider the model of f(QT) gravity as, \(f(Q,T) = -Q+\phi (Q,T)\). We examine the energy condition for the model of f(QT) gravity and find out that our model satisfies the null and strong energy conditions at the same time, it violates the weak and dominant energy conditions. After that, we perform the phase-space study of our cosmological model with and without interaction independently. In case of the absence of interaction, we get six critical points out of which three critical points are stable critical points while the rest three critical points are saddle. When we perform the stability analysis in the presence of interaction, we get three critical points out of which one critical point is stable while the rest two are saddle points. The phase-plot analysis also shows the cosmological models in f(QT) gravity.

f(Q, T) 引力下宇宙学模型的相空间特性
韦尔型 f(Q,T)引力是 f(Q)引力和 f(Q,T)理论的修正,其中非度量用 Q 表示,T 是能动张量的迹。该理论与暗能量的几何解释相结合,可以为晚期宇宙的转变和可观测数据提供精确的解释。在这项研究中,我们提出了一个在 f(Q, T) 引力下的加速宇宙模型。我们认为f(Q,T)引力模型为:(f(Q,T)=-Q+\phi(Q,T)\)。我们考察了f(Q, T)引力模型的能量条件,发现我们的模型在满足空能量条件和强能量条件的同时,违反了弱能量条件和主能量条件。随后,我们分别对有相互作用和无相互作用的宇宙学模型进行了相空间研究。在无相互作用的情况下,我们得到了六个临界点,其中三个临界点为稳定临界点,其余三个临界点为鞍形临界点。在有相互作用的情况下进行稳定性分析时,我们会得到三个临界点,其中一个临界点是稳定的,其余两个临界点是鞍点。相位图分析还显示了 f(Q, T) 引力下的宇宙学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信