Quasi-Grammian soliton and kink dynamics of an \(M\)-component semidiscrete coupled integrable system

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Inam, M. ul Hassan
{"title":"Quasi-Grammian soliton and kink dynamics of an \\(M\\)-component semidiscrete coupled integrable system","authors":"A. Inam,&nbsp;M. ul Hassan","doi":"10.1134/S0040577924100052","DOIUrl":null,"url":null,"abstract":"<p> We investigate the standard binary Darboux transformation (SBDT) for an <span>\\(M\\)</span>-component sdC integrable system. For this, we construct the Darboux matrix using specific eigenvector solutions associated to the Lax pair, not only in the direct space but also in the adjoint space, resulting in the binary Darboux matrix. By the iterative application of the SBDT, we derive quasi-Grammian soliton solutions of the <span>\\(M\\)</span>-component sdC integrable system. We also examine the Darboux transformation (DT) applied to matrix solutions of the sdC integrable system, expressing solutions using quasideterminants. Additionally, we thoroughly discuss the DT applied to scalar solutions of the system, expressing solutions as ratios of determinants. Furthermore, we investigate the SBDT and its application to obtaining quasi-Grammian multikink and multisoliton solutions for the <span>\\(M\\)</span>-component sdC integrable system. Additionally, we demonstrate that quasi-Grammian solutions can be simplified to elementary solutions by reducing spectral parameters. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 1","pages":"1650 - 1674"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924100052","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the standard binary Darboux transformation (SBDT) for an \(M\)-component sdC integrable system. For this, we construct the Darboux matrix using specific eigenvector solutions associated to the Lax pair, not only in the direct space but also in the adjoint space, resulting in the binary Darboux matrix. By the iterative application of the SBDT, we derive quasi-Grammian soliton solutions of the \(M\)-component sdC integrable system. We also examine the Darboux transformation (DT) applied to matrix solutions of the sdC integrable system, expressing solutions using quasideterminants. Additionally, we thoroughly discuss the DT applied to scalar solutions of the system, expressing solutions as ratios of determinants. Furthermore, we investigate the SBDT and its application to obtaining quasi-Grammian multikink and multisoliton solutions for the \(M\)-component sdC integrable system. Additionally, we demonstrate that quasi-Grammian solutions can be simplified to elementary solutions by reducing spectral parameters.

一个(M)分量半离散耦合可积分系统的准格拉米安孤子和扭结动力学
我们研究了一个 \(M\)-component sdC 可积分系统的标准二元达尔布克斯变换(SBDT)。为此,我们使用与拉克斯对相关的特定特征向量解来构造达尔布克斯矩阵,不仅在直接空间,而且在邻接空间,从而得到二元达尔布克斯矩阵。通过 SBDT 的迭代应用,我们得出了 \(M\)-component sdC 可积分系统的准伽马孤子解。我们还研究了应用于 sdC 可积分系统矩阵解的达布变换(Darboux transformation,DT),用准决定子表达解。此外,我们还深入讨论了应用于该系统标量解的达布变换,它以行列式的比率来表示解。此外,我们还研究了 SBDT 及其应用,以获得 \(M\)-component sdC 可积分系统的准格拉姆多链子和多索利子解。此外,我们还证明了准格拉姆解可以通过减少谱参数简化为基本解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信