Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
N. A. Polekhina, I. Yu. Litovchenko, S. A. Akkuzin, K. V. Spiridonova, V. V. Osipova, V. M. Chernov, M. V. Leontyeva-Smirnova
{"title":"Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions","authors":"N. A. Polekhina,&nbsp;I. Yu. Litovchenko,&nbsp;S. A. Akkuzin,&nbsp;K. V. Spiridonova,&nbsp;V. V. Osipova,&nbsp;V. M. Chernov,&nbsp;M. V. Leontyeva-Smirnova","doi":"10.1134/S1029959924050035","DOIUrl":null,"url":null,"abstract":"<p>TEM studies were performed to examine the effect of holding of dispersion-strengthened heat-resistant reduced activation 12% chromium ferritic-martensitic steel EK-181 in static liquid lead for 3000 h at 600°C on the steel microstructure in comparison with the steel after conventional heat treatment by quenching and tempering at 720°C. It was found that the steel microstructure has good thermal stability under the specified experimental conditions. Microstructural deformation of EK-181 steel was studied in the neck region of tensile specimens tested at the temperatures 20, 680, 700, and 720°C with and without holding in liquid lead, and their fracture mechanisms were investigated. As a result of plastic deformation during tensile testing at room temperature, martensite plates and laths near the fracture surface are distorted and fragmented with the formation of new low-angle boundaries, and the dislocation density increases. At the deformation temperatures 680–720°C, nearly equiaxed ferrite grains are formed, the density and size of second-phase particles (M<sub>23</sub>C<sub>6</sub> and MX) increases due to dynamic strain aging, and the dislocation density decreases locally. As the test temperature rises, the degree of martensite tempering increases. At <i>T</i> ≥ 700°C, some dynamic polygonization and dynamic recrystallization are observed. At elevated tension temperatures, ferrite coarsening is more significant in the specimens held in lead as compared to the conventionally treated material. The plastic deformation and fracture behavior of the steel are largely determined by the test temperature, rather than by the treatment mode.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 5","pages":"529 - 540"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1029959924050035.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924050035","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

TEM studies were performed to examine the effect of holding of dispersion-strengthened heat-resistant reduced activation 12% chromium ferritic-martensitic steel EK-181 in static liquid lead for 3000 h at 600°C on the steel microstructure in comparison with the steel after conventional heat treatment by quenching and tempering at 720°C. It was found that the steel microstructure has good thermal stability under the specified experimental conditions. Microstructural deformation of EK-181 steel was studied in the neck region of tensile specimens tested at the temperatures 20, 680, 700, and 720°C with and without holding in liquid lead, and their fracture mechanisms were investigated. As a result of plastic deformation during tensile testing at room temperature, martensite plates and laths near the fracture surface are distorted and fragmented with the formation of new low-angle boundaries, and the dislocation density increases. At the deformation temperatures 680–720°C, nearly equiaxed ferrite grains are formed, the density and size of second-phase particles (M23C6 and MX) increases due to dynamic strain aging, and the dislocation density decreases locally. As the test temperature rises, the degree of martensite tempering increases. At T ≥ 700°C, some dynamic polygonization and dynamic recrystallization are observed. At elevated tension temperatures, ferrite coarsening is more significant in the specimens held in lead as compared to the conventionally treated material. The plastic deformation and fracture behavior of the steel are largely determined by the test temperature, rather than by the treatment mode.

不同热处理条件下还原活化铁素体-马氏体钢 EK-181 的微结构变形和断裂
与在 720°C 进行淬火和回火的传统热处理后的钢材相比,TEM 研究考察了在 600°C 的静态液态铅中将分散强化的耐热降低活化 12% 铬铁素体-马氏体钢 EK-181 保温 3000 小时对钢微观结构的影响。结果发现,在特定的实验条件下,钢的微观结构具有良好的热稳定性。研究了 EK-181 钢在 20、680、700 和 720°C 温度下,在液态铅中保温或不保温的拉伸试样颈部区域的微观结构变形,并探讨了其断裂机制。在室温下进行拉伸试验时,由于塑性变形,断裂面附近的马氏体板和板条发生扭曲和破碎,形成新的低角度边界,位错密度增加。在变形温度为 680-720°C 时,形成近似等轴的铁素体晶粒,第二相颗粒(M23C6 和 MX)的密度和尺寸因动态应变时效而增大,位错密度局部降低。随着试验温度的升高,马氏体回火程度增加。当温度≥700°C时,可观察到一些动态多边形化和动态再结晶。在拉伸温度升高时,与常规处理的材料相比,铅试样中的铁素体粗化更为明显。钢的塑性变形和断裂行为主要取决于试验温度,而不是处理模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信