Design of Hybrid Porous Materials for Obtaining and Storage of Gas Hydrates

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC
Wenpeng Li, Tianduo Li, Dmitry Repin, Alexandra Kuchierskaya, Daria Sergeeva, Anton Semenov, Vladimir Vinokurov, Andrey Stoporev
{"title":"Design of Hybrid Porous Materials for Obtaining and Storage of Gas Hydrates","authors":"Wenpeng Li,&nbsp;Tianduo Li,&nbsp;Dmitry Repin,&nbsp;Alexandra Kuchierskaya,&nbsp;Daria Sergeeva,&nbsp;Anton Semenov,&nbsp;Vladimir Vinokurov,&nbsp;Andrey Stoporev","doi":"10.1134/S0965544124060057","DOIUrl":null,"url":null,"abstract":"<p>—This study explores the potential of creating hybrid porous materials to develop gas storage and transport technologies based on gas hydrates. The research provides a brief overview of materials used as containers for producing and storing gas hydrates. It analyzes the properties of cellulose-based hydrate carriers using FT-IR spectroscopy and scanning electron microscopy, and examines a methane hydrate growth in the proposed hybrid material based on cellulose and polystyrene. The mass fraction of water in the tested material was 44%. The rate of water-to-hydrate conversion during cyclic cooling of this material under a methane pressure of 9 MPa was 61.4%. Cellulose-based materials containing a hydrophobic component that maintains the mechanical strength of the system can be a viable carrier for the cyclic production and decomposition of gas hydrates. The obtained data are of great value for specialists involved in the hydrocarbon production and the study of gas hydrates, though also may be interesting for a broader audience.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124060057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

—This study explores the potential of creating hybrid porous materials to develop gas storage and transport technologies based on gas hydrates. The research provides a brief overview of materials used as containers for producing and storing gas hydrates. It analyzes the properties of cellulose-based hydrate carriers using FT-IR spectroscopy and scanning electron microscopy, and examines a methane hydrate growth in the proposed hybrid material based on cellulose and polystyrene. The mass fraction of water in the tested material was 44%. The rate of water-to-hydrate conversion during cyclic cooling of this material under a methane pressure of 9 MPa was 61.4%. Cellulose-based materials containing a hydrophobic component that maintains the mechanical strength of the system can be a viable carrier for the cyclic production and decomposition of gas hydrates. The obtained data are of great value for specialists involved in the hydrocarbon production and the study of gas hydrates, though also may be interesting for a broader audience.

Abstract Image

设计用于获取和储存天然气水合物的混合多孔材料
-本研究探讨了创造混合多孔材料的潜力,以开发基于天然气水合物的天然气储存和运输技术。研究简要概述了用作生产和储存天然气水合物容器的材料。研究利用傅立叶变换红外光谱和扫描电子显微镜分析了纤维素水合物载体的特性,并研究了甲烷水合物在基于纤维素和聚苯乙烯的混合材料中的生长情况。测试材料中水的质量分数为 44%。在 9 兆帕的甲烷压力下循环冷却这种材料时,水到水合物的转化率为 61.4%。含有疏水成分的纤维素基材料可以保持系统的机械强度,是循环生产和分解天然气水合物的可行载体。所获得的数据对从事碳氢化合物生产和天然气水合物研究的专家具有重要价值,但也可能对更广泛的受众具有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信