A combined generalized Kaup–Newell soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Wen-Xiu Ma
{"title":"A combined generalized Kaup–Newell soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure","authors":"Wen-Xiu Ma","doi":"10.1134/S0040577924100027","DOIUrl":null,"url":null,"abstract":"<p> On the basis of a specific matrix Lie algebra, we propose a Kaup–Newell-type matrix eigenvalue problem with four potentials and compute an associated soliton hierarchy within the zero-curvature formulation. A hereditary recursion operator and a bi-Hamiltonian structure are presented to show the Liouville integrability of the resulting soliton hierarchy. An illustrative example is a novel model consisting of combined derivative nonlinear Schrödinger equations with two arbitrary constants. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 1","pages":"1603 - 1614"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924100027","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

On the basis of a specific matrix Lie algebra, we propose a Kaup–Newell-type matrix eigenvalue problem with four potentials and compute an associated soliton hierarchy within the zero-curvature formulation. A hereditary recursion operator and a bi-Hamiltonian structure are presented to show the Liouville integrability of the resulting soliton hierarchy. An illustrative example is a novel model consisting of combined derivative nonlinear Schrödinger equations with two arbitrary constants.

广义考普-纽维尔孤子组合层次及其遗传递归算子和双哈密顿结构
在特定矩阵李代数的基础上,我们提出了具有四个势的考普-纽厄尔型矩阵特征值问题,并在零曲率公式中计算了相关的孤子层次。我们提出了一个遗传递归算子和一个双哈密顿结构,以显示所得到的孤子层次结构的Liouville可积分性。一个说明性的例子是由两个任意常数的组合导数非线性薛定谔方程组成的新模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信