Self-gravitating Higgs field of an asymmetric binary scalar charge

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yu. G. Ignat’ev
{"title":"Self-gravitating Higgs field of an asymmetric binary scalar charge","authors":"Yu. G. Ignat’ev","doi":"10.1134/S0040577924100088","DOIUrl":null,"url":null,"abstract":"<p> The self-gravitating Higgs field of a scalar charge is studied in the case of an asymmetric scalar doublet containing not only the canonical but also a phantom component. We show that in the zeroth and first approximation in the smallness of the canonical and phantom scalar charges, the gravitational field of the scalar charge is described by the Schwarzschild–de Sitter metric with a cosmological constant determined by a stable equilibrium point — the vacuum potential of the canonical Higgs field and the zero value of the scalar potential. An equation for the perturbation of the stable value of the potential is obtained and studied, and the asymptotic behavior in the near and far zones is found. The averaging of microscopic oscillations of the scalar field is carried out and it is shown that the sign of the contribution of microscopic oscillations to the macroscopic energy of the scalar field is completely determined by the values of the fundamental constants of the Higgs potential of the asymmetric scalar doublet. Particular attention is paid to the case where the contribution of oscillations to the macroscopic energy and pressure densities is strictly equal to zero. Possible applications of the obtained solutions are discussed. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 1","pages":"1711 - 1725"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924100088","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The self-gravitating Higgs field of a scalar charge is studied in the case of an asymmetric scalar doublet containing not only the canonical but also a phantom component. We show that in the zeroth and first approximation in the smallness of the canonical and phantom scalar charges, the gravitational field of the scalar charge is described by the Schwarzschild–de Sitter metric with a cosmological constant determined by a stable equilibrium point — the vacuum potential of the canonical Higgs field and the zero value of the scalar potential. An equation for the perturbation of the stable value of the potential is obtained and studied, and the asymptotic behavior in the near and far zones is found. The averaging of microscopic oscillations of the scalar field is carried out and it is shown that the sign of the contribution of microscopic oscillations to the macroscopic energy of the scalar field is completely determined by the values of the fundamental constants of the Higgs potential of the asymmetric scalar doublet. Particular attention is paid to the case where the contribution of oscillations to the macroscopic energy and pressure densities is strictly equal to zero. Possible applications of the obtained solutions are discussed.

不对称二元标量电荷的自引力希格斯场
我们研究了标量电荷的自引力希格斯场,这种情况下的不对称标量双t不仅包含规范分量,还包含幽灵分量。我们证明,在正标量和幻标量电荷较小的零次近似和一次近似中,标量电荷的引力场由施瓦兹希尔德-德-西特度量描述,其宇宙学常数由稳定平衡点--正标量希格斯场的真空势和标量势的零值--决定。我们获得并研究了扰动势稳定值的方程,并发现了近区和远区的渐近行为。对标量场的微观振荡进行了平均,结果表明微观振荡对标量场宏观能量的贡献的符号完全由非对称标量双星希格斯势的基本常数的值决定。我们特别关注振荡对宏观能量和压力密度的贡献严格等于零的情况。还讨论了所获求解的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信