P. Yu. Apel, P. M. Biesheuvel, O. V. Bobreshova, I. L. Borisov, V. I. Vasil’eva, V. V. Volkov, E. A. Grushevenko, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, I. I. Ryzhkov, M. V. Sharafan, A. B. Yaroslavtsev
{"title":"Concentration Polarization in Membrane Systems","authors":"P. Yu. Apel, P. M. Biesheuvel, O. V. Bobreshova, I. L. Borisov, V. I. Vasil’eva, V. V. Volkov, E. A. Grushevenko, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, I. I. Ryzhkov, M. V. Sharafan, A. B. Yaroslavtsev","doi":"10.1134/S2517751624600390","DOIUrl":null,"url":null,"abstract":"<p>The phenomenon of concentration polarization (CP) in membrane systems refers to the emergence of concentration gradients in solution near the membrane surface due to the selective transport of some solution components through the membrane under the effect of transmembrane driving forces. CP accompanies all types of membrane processes, changing transport conditions and reducing efficiency of separation processes: in most cases, the total transport rate decreases, the energy consumption increases, and the selectivity of the transport process is lost. This review addresses general regularities and specific features of the CP phenomenon in electrodialysis, reverse osmosis, nanofiltration, ultrafiltration, and pervaporation processes, as well as membrane sensing systems and fuel cells. Fundamentals of the CP phenomenon and experimental methods for its investigation are discussed.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 3","pages":"133 - 161"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomenon of concentration polarization (CP) in membrane systems refers to the emergence of concentration gradients in solution near the membrane surface due to the selective transport of some solution components through the membrane under the effect of transmembrane driving forces. CP accompanies all types of membrane processes, changing transport conditions and reducing efficiency of separation processes: in most cases, the total transport rate decreases, the energy consumption increases, and the selectivity of the transport process is lost. This review addresses general regularities and specific features of the CP phenomenon in electrodialysis, reverse osmosis, nanofiltration, ultrafiltration, and pervaporation processes, as well as membrane sensing systems and fuel cells. Fundamentals of the CP phenomenon and experimental methods for its investigation are discussed.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.