On the Hardy number of Koenigs domains

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Manuel D. Contreras, Francisco J. Cruz-Zamorano, Maria Kourou, Luis Rodríguez-Piazza
{"title":"On the Hardy number of Koenigs domains","authors":"Manuel D. Contreras,&nbsp;Francisco J. Cruz-Zamorano,&nbsp;Maria Kourou,&nbsp;Luis Rodríguez-Piazza","doi":"10.1007/s13324-024-00981-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work studies the Hardy number of hyperbolic planar domains satisfying Abel’s inclusion property, which are usually known as Koenigs domains. More explicitly, we prove that the Hardy number of a Koenings domains whose complement is non-polar is greater than or equal to 1/2, and this lower bound is sharp. In contrast to this result, we provide examples of general domains whose Hardy numbers are arbitrarily small. Additionally, we outline the connection of the aforementioned class of domains with the discrete dynamics of the unit disc and obtain results on the range of Hardy number of Koenigs maps, in the hyperbolic and parabolic case.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00981-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00981-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work studies the Hardy number of hyperbolic planar domains satisfying Abel’s inclusion property, which are usually known as Koenigs domains. More explicitly, we prove that the Hardy number of a Koenings domains whose complement is non-polar is greater than or equal to 1/2, and this lower bound is sharp. In contrast to this result, we provide examples of general domains whose Hardy numbers are arbitrarily small. Additionally, we outline the connection of the aforementioned class of domains with the discrete dynamics of the unit disc and obtain results on the range of Hardy number of Koenigs maps, in the hyperbolic and parabolic case.

关于柯尼希斯域的哈代数
这项工作研究的是满足阿贝尔包容性质的双曲平面域的哈代数,这些双曲平面域通常被称为柯尼希斯域。更明确地说,我们证明了补码为非极性的柯尼希斯域的哈代数大于或等于 1/2,而且这个下界是尖锐的。与这一结果相反,我们举例说明了哈代数任意小的一般域。此外,我们还概述了上述一类域与单位圆盘离散动力学的联系,并获得了双曲和抛物情况下柯尼希斯映射的哈代数范围的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信