Chao Chen;Jintao Liang;Taohua Ren;Yi Wang;Zhisong Liu
{"title":"Temporal and Spatial Analysis of Coastal Landscape Patterns Using the GEE Cloud Platform and Landsat Time Series","authors":"Chao Chen;Jintao Liang;Taohua Ren;Yi Wang;Zhisong Liu","doi":"10.1109/JSTARS.2024.3473937","DOIUrl":null,"url":null,"abstract":"Owing to the rapid urbanization combined with global climate change, dramatic land-use change in coastal watersheds is occurred, which, in turn, cause the evolution of landscape patterns and threaten the valuable but fragile ecosystem. The coastal zone is characterized by severe cloud cover, frequent changes in land type, and fragmented landscape, so it is challenging to carry out the accurate landscape patterns analysis. To address this problem, this study employed the Google Earth engine cloud platform, Landsat time series, and landscape metrics in the Fragstats model to develop a comprehensive framework that integrates landscape pattern metrics and spatial analysis methods, considering both type level and landscape level. The Hangzhou Bay region was selected for conducting land-use classification and landscape patterns analysis. The results indicate that, during nearly four decades, with the continuous expansion of the urban, the urbanization process has accelerated, and the construction land has expanded by 6.93 times. By analyzing the evolution of landscape patterns, Hangzhou Bay heightened landscape fragmentation and patch shapes became more irregular caused by a trend toward intensified urbanization. The Shannon's diversity index continuously increased from 1.14 to 1.51, while the contagion index consistently decreased from 59.83% to 42.21%, suggesting an increase in land-use diversity, reduced aggregation, and extension tendencies between land patches, along with a decrease in the proportion of highly connected patches within the landscape. This study is anticipated to provide robust evidence for the rational planning of future development directions and the deployment of landscape ecological spatial services.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"18379-18398"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10704979/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the rapid urbanization combined with global climate change, dramatic land-use change in coastal watersheds is occurred, which, in turn, cause the evolution of landscape patterns and threaten the valuable but fragile ecosystem. The coastal zone is characterized by severe cloud cover, frequent changes in land type, and fragmented landscape, so it is challenging to carry out the accurate landscape patterns analysis. To address this problem, this study employed the Google Earth engine cloud platform, Landsat time series, and landscape metrics in the Fragstats model to develop a comprehensive framework that integrates landscape pattern metrics and spatial analysis methods, considering both type level and landscape level. The Hangzhou Bay region was selected for conducting land-use classification and landscape patterns analysis. The results indicate that, during nearly four decades, with the continuous expansion of the urban, the urbanization process has accelerated, and the construction land has expanded by 6.93 times. By analyzing the evolution of landscape patterns, Hangzhou Bay heightened landscape fragmentation and patch shapes became more irregular caused by a trend toward intensified urbanization. The Shannon's diversity index continuously increased from 1.14 to 1.51, while the contagion index consistently decreased from 59.83% to 42.21%, suggesting an increase in land-use diversity, reduced aggregation, and extension tendencies between land patches, along with a decrease in the proportion of highly connected patches within the landscape. This study is anticipated to provide robust evidence for the rational planning of future development directions and the deployment of landscape ecological spatial services.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.