Colin Prieur;Antony Laybros;Giovanni Frati;Daniel Schläpfer;Jocelyn Chanussot;Grégoire Vincent
{"title":"Investigating Abiotic Sources of Spectral Variability From Multitemporal Hyperspectral Airborne Acquisitions Over the French Guyana Canopy","authors":"Colin Prieur;Antony Laybros;Giovanni Frati;Daniel Schläpfer;Jocelyn Chanussot;Grégoire Vincent","doi":"10.1109/JSTARS.2024.3475050","DOIUrl":null,"url":null,"abstract":"Classifiers trained on airborne hyperspectral imagery are proficient in identifying tree species in hyperdiverse tropical rainforests. However, spectral fluctuations, influenced by intrinsic and environmental factors, such as the heterogeneity of individual crown properties and atmospheric conditions, pose challenges for large-scale mapping. This study proposes an approach to assess the instability of airborne imaging spectroscopy reflectance in response to environmental variability. Through repeated overflights of two tropical forest sites in French Guiana, we explore factors that affect the spectral similarity between dates and acquisitions. By decomposing acquisitions into subsets and analyzing different sources of variability, we analyze the stability of reflectance and various vegetation indices with respect to specific sources of variability. Factors such as the variability of the viewing and sun angles or the variability of the atmospheric state shed light on the impact of sources of spectral instability, informing processing strategies. Our experiments conclude that the environmental factors that affect the canopy reflectance the most vary according to the considered spectral domain. In the short wave infrared (SWIR) domain, solar angle variation is the main source of variability, followed by atmospheric and viewing angles. In the visible and near infrared (VNIR) domain, atmospheric variability dominates, followed by solar angle and viewing angle variabilities. Despite efforts to address these variabilities, significant spectral instability persists, highlighting the need for more robust representations and improved correction methods for reliable species-specific signatures.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"18751-18768"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706241/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Classifiers trained on airborne hyperspectral imagery are proficient in identifying tree species in hyperdiverse tropical rainforests. However, spectral fluctuations, influenced by intrinsic and environmental factors, such as the heterogeneity of individual crown properties and atmospheric conditions, pose challenges for large-scale mapping. This study proposes an approach to assess the instability of airborne imaging spectroscopy reflectance in response to environmental variability. Through repeated overflights of two tropical forest sites in French Guiana, we explore factors that affect the spectral similarity between dates and acquisitions. By decomposing acquisitions into subsets and analyzing different sources of variability, we analyze the stability of reflectance and various vegetation indices with respect to specific sources of variability. Factors such as the variability of the viewing and sun angles or the variability of the atmospheric state shed light on the impact of sources of spectral instability, informing processing strategies. Our experiments conclude that the environmental factors that affect the canopy reflectance the most vary according to the considered spectral domain. In the short wave infrared (SWIR) domain, solar angle variation is the main source of variability, followed by atmospheric and viewing angles. In the visible and near infrared (VNIR) domain, atmospheric variability dominates, followed by solar angle and viewing angle variabilities. Despite efforts to address these variabilities, significant spectral instability persists, highlighting the need for more robust representations and improved correction methods for reliable species-specific signatures.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.