Huinan Guo;Nengshuang Zhang;Jing Zhang;Wuxia Zhang;Congying Sun
{"title":"Location-Guided Dense Nested Attention Network for Infrared Small Target Detection","authors":"Huinan Guo;Nengshuang Zhang;Jing Zhang;Wuxia Zhang;Congying Sun","doi":"10.1109/JSTARS.2024.3472041","DOIUrl":null,"url":null,"abstract":"Infrared small target (IST) detection involves identifying objects that occupy fewer than 81 pixels in a 256 × 256 image. Because the target is small and lacks texture, structure, and shape information on its surface, this task is highly challenging. CNN-based methods can extract rich features of the target. However, overly deep network structures may increase the risk of losing small targets. In addition, pixel-level positional deviations can also reduce the detection accuracy of IST. To address these challenges, we propose the location-guided dense nested attention network for IST detection. The proposed network consists of a pixel attention guided feature extraction module (PAG-FEM), a channel attention guided feature fusion module (CAG-FFM), and a detection module. First, the PAG-FEM utilizes the DNIM dense nested blocks from the DNANet as the backbone, integrating both channel and pixel attention mechanisms. This method focuses on the semantic and positional information of the targets, yielding semantic features that emphasize the positions of small targets. Second, the CAG-FFM employs upsampling and convolution operations to align the feature sizes, while utilizing the channel attention mechanism to obtain effective channel information. Then, these features are fused through stacking, addition, and averaging operations to obtain more discriminative features. Finally, the detection module uses eight-connected neighborhood clustering method to obtain the centroid coordinates of the targets for subsequent detection evaluation. Three datasets are utilized to verify our method, and experimental results show that our method performs better than other advanced methods.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"18535-18548"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702466","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10702466/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared small target (IST) detection involves identifying objects that occupy fewer than 81 pixels in a 256 × 256 image. Because the target is small and lacks texture, structure, and shape information on its surface, this task is highly challenging. CNN-based methods can extract rich features of the target. However, overly deep network structures may increase the risk of losing small targets. In addition, pixel-level positional deviations can also reduce the detection accuracy of IST. To address these challenges, we propose the location-guided dense nested attention network for IST detection. The proposed network consists of a pixel attention guided feature extraction module (PAG-FEM), a channel attention guided feature fusion module (CAG-FFM), and a detection module. First, the PAG-FEM utilizes the DNIM dense nested blocks from the DNANet as the backbone, integrating both channel and pixel attention mechanisms. This method focuses on the semantic and positional information of the targets, yielding semantic features that emphasize the positions of small targets. Second, the CAG-FFM employs upsampling and convolution operations to align the feature sizes, while utilizing the channel attention mechanism to obtain effective channel information. Then, these features are fused through stacking, addition, and averaging operations to obtain more discriminative features. Finally, the detection module uses eight-connected neighborhood clustering method to obtain the centroid coordinates of the targets for subsequent detection evaluation. Three datasets are utilized to verify our method, and experimental results show that our method performs better than other advanced methods.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.