Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches

Muhammad Ehtisham Hassan;Iffat Maab;Masroor Hussain;Usman Habib;Yutaka Matsuo
{"title":"Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches","authors":"Muhammad Ehtisham Hassan;Iffat Maab;Masroor Hussain;Usman Habib;Yutaka Matsuo","doi":"10.1109/OJCS.2024.3476378","DOIUrl":null,"url":null,"abstract":"The complex linguistic characteristics and limited resources present sentiment analysis in Roman Urdu as a unique challenge, necessitating the development of accurate NLP models. In this study, we investigate the performance of prominent ensemble methods on two diverse datasets of UCL and IMDB movie reviews with Roman Urdu and English dialects, respectively. We perform a comparative examination to assess the effectiveness of ensemble techniques including stacking, bagging, random subspace, and boosting, optimized through grid search. The ensemble techniques employ four base learners (Support Vector Machine, Random Forest, Logistic Regression, and Naive Bayes) for sentiment classification. The experiment analysis focuses on different N-gram feature sets (unigrams, bigrams, and trigrams), Chi-square feature selection, and text representation schemes (Bag of Words and TF-IDF). Our empirical findings underscore the superiority of stacking across both datasets, achieving high accuracies and F1-scores: 80.30% and 81.76% on the UCL dataset, and 90.92% and 91.12% on the IMDB datasets, respectively. The proposed approach has significant performance compared to baseline approaches on the relevant tasks and improves the accuracy up to 7% on the UCL dataset.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"5 ","pages":"599-611"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10707202","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707202/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complex linguistic characteristics and limited resources present sentiment analysis in Roman Urdu as a unique challenge, necessitating the development of accurate NLP models. In this study, we investigate the performance of prominent ensemble methods on two diverse datasets of UCL and IMDB movie reviews with Roman Urdu and English dialects, respectively. We perform a comparative examination to assess the effectiveness of ensemble techniques including stacking, bagging, random subspace, and boosting, optimized through grid search. The ensemble techniques employ four base learners (Support Vector Machine, Random Forest, Logistic Regression, and Naive Bayes) for sentiment classification. The experiment analysis focuses on different N-gram feature sets (unigrams, bigrams, and trigrams), Chi-square feature selection, and text representation schemes (Bag of Words and TF-IDF). Our empirical findings underscore the superiority of stacking across both datasets, achieving high accuracies and F1-scores: 80.30% and 81.76% on the UCL dataset, and 90.92% and 91.12% on the IMDB datasets, respectively. The proposed approach has significant performance compared to baseline approaches on the relevant tasks and improves the accuracy up to 7% on the UCL dataset.
使用基于机器学习的集合方法对低资源罗马乌尔都语和电影评论情感进行极性分类
复杂的语言特点和有限的资源使罗马乌尔都语的情感分析成为一项独特的挑战,需要开发精确的 NLP 模型。在本研究中,我们研究了著名的集合方法在两个不同数据集上的表现,这两个数据集分别是 UCL 和 IMDB 电影评论,包含罗马乌尔都语和英语方言。我们通过比较研究来评估通过网格搜索优化的集合技术的有效性,包括堆叠、袋装、随机子空间和提升。这些集合技术采用了四种基础学习器(支持向量机、随机森林、逻辑回归和 Naive Bayes)进行情感分类。实验分析侧重于不同的 N-gram 特征集(unigrams、bigrams 和 trigrams)、Chi-square 特征选择和文本表示方案(Bag of Words 和 TF-IDF)。我们的实证研究结果表明,在这两个数据集上进行堆叠具有优越性,可以获得很高的准确率和 F1 分数:在 UCL 数据集上分别为 80.30% 和 81.76%,在 IMDB 数据集上分别为 90.92% 和 91.12%。在相关任务中,与基线方法相比,所提出的方法具有显著的性能,在 UCL 数据集上,准确率提高了 7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信