Enhancing Stray Magnetic Energy Harvesting with Flexible PVDF/CoFe2O4 Electrospun Fiber Composite Magneto-Mechano-Electric Generators

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Durga Prasad Pabba*, Nayak Ram, J. Kaarthik, Naveen Kumar Pabba and Annapureddy Venkateswarlu*, 
{"title":"Enhancing Stray Magnetic Energy Harvesting with Flexible PVDF/CoFe2O4 Electrospun Fiber Composite Magneto-Mechano-Electric Generators","authors":"Durga Prasad Pabba*,&nbsp;Nayak Ram,&nbsp;J. Kaarthik,&nbsp;Naveen Kumar Pabba and Annapureddy Venkateswarlu*,&nbsp;","doi":"10.1021/acsaelm.4c0117310.1021/acsaelm.4c01173","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a highly flexible, vertically installed electrospun PVDF/CoFe<sub>2</sub>O<sub>4</sub> composite-based Magneto-Mechano-Electric (MME) generator designed to capture and utilize environmental stray magnetic noise, a prevalent form of waste energy from electrical power transmission systems. We fabricated highly flexible, freestanding magnetoelectric composite electrospun fibers by combining piezoelectric PVDF polymer and magnetostrictive CoFe<sub>2</sub>O<sub>4</sub>. XRD and FTIR analyses confirmed a significant enhancement in the ferroelectric β-phase content, reaching 86% with the incorporation of CoFe<sub>2</sub>O<sub>4</sub>. The electrostatic interaction mechanism between PVDF and CoFe<sub>2</sub>O<sub>4</sub> was explained and validated through Zeta potential and XPS analyses. The developed MME generator demonstrated a high output voltage and power density of 12.1 V and 174 μW/m<sup>2</sup>, respectively, under a low AC magnetic field of 6 Oe. The detailed mechanism of energy generation in the MME device has been explained. The fabricated MME device also demonstrated the highest magnetoelectric voltage coefficient (α<sub>MME</sub>) value of 224 V cm<sup>–1</sup> Oe<sup>–1</sup>, even in the absence of a magnetic bias DC field. The MME generator has demonstrated stable output harvesting performance across 50,000 testing cycles. This MME generator efficiently harvested low and weak parasitic magnetic noise from various electrical appliances, such as dryers, kettles, and iron boxes, thereby enabling a remote power supply to consumer electronics.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01173","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a highly flexible, vertically installed electrospun PVDF/CoFe2O4 composite-based Magneto-Mechano-Electric (MME) generator designed to capture and utilize environmental stray magnetic noise, a prevalent form of waste energy from electrical power transmission systems. We fabricated highly flexible, freestanding magnetoelectric composite electrospun fibers by combining piezoelectric PVDF polymer and magnetostrictive CoFe2O4. XRD and FTIR analyses confirmed a significant enhancement in the ferroelectric β-phase content, reaching 86% with the incorporation of CoFe2O4. The electrostatic interaction mechanism between PVDF and CoFe2O4 was explained and validated through Zeta potential and XPS analyses. The developed MME generator demonstrated a high output voltage and power density of 12.1 V and 174 μW/m2, respectively, under a low AC magnetic field of 6 Oe. The detailed mechanism of energy generation in the MME device has been explained. The fabricated MME device also demonstrated the highest magnetoelectric voltage coefficient (αMME) value of 224 V cm–1 Oe–1, even in the absence of a magnetic bias DC field. The MME generator has demonstrated stable output harvesting performance across 50,000 testing cycles. This MME generator efficiently harvested low and weak parasitic magnetic noise from various electrical appliances, such as dryers, kettles, and iron boxes, thereby enabling a remote power supply to consumer electronics.

Abstract Image

利用柔性 PVDF/CoFe2O4 电纺丝纤维复合磁力机械发电装置增强杂散磁能收集能力
本研究介绍了一种高度灵活、垂直安装的基于 PVDF/CoFe2O4 复合材料的磁机电(MME)发电机,旨在捕捉和利用环境杂散磁噪声,这是电力传输系统中一种普遍的废能形式。我们将压电 PVDF 聚合物和磁致伸缩 CoFe2O4 结合在一起,制造出了高柔性、独立的磁电复合电纺纤维。XRD 和傅立叶变换红外光谱分析证实,加入 CoFe2O4 后,铁电 β 相含量显著增加,达到 86%。Zeta 电位和 XPS 分析解释并验证了 PVDF 与 CoFe2O4 之间的静电相互作用机制。在 6 Oe 的低交流磁场下,所开发的 MME 发电机的输出电压和功率密度分别高达 12.1 V 和 174 μW/m2。详细解释了 MME 设备的能量产生机制。即使在没有磁偏置直流电场的情况下,所制造的 MME 器件也能显示出 224 V cm-1 Oe-1 的最高磁电电压系数 (αMME)。该 MME 发生器在 50,000 次测试周期中表现出稳定的输出采集性能。该 MME 发生器能有效地收集来自各种电器(如烘干机、水壶和铁盒)的低而微弱的寄生磁噪声,从而实现了对消费类电子产品的远程供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信