Learning Biophysical Dynamics with Protein Language Models.

Chao Hou, Haiqing Zhao, Yufeng Shen
{"title":"Learning Biophysical Dynamics with Protein Language Models.","authors":"Chao Hou, Haiqing Zhao, Yufeng Shen","doi":"10.1101/2024.10.11.617911","DOIUrl":null,"url":null,"abstract":"<p><p>Structural dynamics are fundamental to protein functions and mutation effects. Current protein deep learning models are predominantly trained on sequence and/or static structure data, which often fail to capture the dynamic nature of proteins. To address this, we introduce SeqDance and ESMDance, two protein language models trained on dynamic biophysical properties derived from molecular dynamics simulations and normal mode analyses of over 64,000 proteins. SeqDance, trained from scratch, learns both local dynamic interactions and global conformational properties for ordered and disordered proteins. SeqDance predicted dynamic property changes reflect mutation effect on protein folding stability. ESMDance, built upon ESM2 outputs, substantially outperforms ESM2 in zero-shot prediction of mutation effects for designed and viral proteins which lack evolutionary information. Together, SeqDance and ESMDance offer a new framework for integrating protein dynamics into language models, enabling more generalizable predictions of protein behavior and mutation effects.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.11.617911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural dynamics are fundamental to protein functions and mutation effects. Current protein deep learning models are predominantly trained on sequence and/or static structure data, which often fail to capture the dynamic nature of proteins. To address this, we introduce SeqDance and ESMDance, two protein language models trained on dynamic biophysical properties derived from molecular dynamics simulations and normal mode analyses of over 64,000 proteins. SeqDance, trained from scratch, learns both local dynamic interactions and global conformational properties for ordered and disordered proteins. SeqDance predicted dynamic property changes reflect mutation effect on protein folding stability. ESMDance, built upon ESM2 outputs, substantially outperforms ESM2 in zero-shot prediction of mutation effects for designed and viral proteins which lack evolutionary information. Together, SeqDance and ESMDance offer a new framework for integrating protein dynamics into language models, enabling more generalizable predictions of protein behavior and mutation effects.

SeqDance:表示蛋白质动态特性的蛋白质语言模型
蛋白质通过将氨基酸序列折叠成动态结构组合来实现其功能。尽管蛋白质动力学具有重要作用,但其复杂性和缺乏高效的表示方法限制了其与蛋白质功能和突变适应性研究的结合,尤其是在深度学习应用中。为了解决这个问题,我们提出了一种蛋白质语言模型 SeqDance,旨在直接从序列中学习蛋白质动态特性的表征。SeqDance 是根据超过 30,400 条分子动力学轨迹和 28,600 次正态模式分析得出的动态生物物理特性预先训练的。我们的研究结果表明,SeqDance 能有效捕捉局部动态相互作用、协同运动模式和全局构象特征,即使是在预训练集中缺乏同源物的蛋白质也不例外。此外,我们还发现 SeqDance 增强了对蛋白质适应性景观、无序到有序过渡结合区域以及相分离蛋白质的预测。通过从序列中学习动态特性,SeqDance 补充了传统的基于进化和静态结构的方法,为蛋白质的行为和功能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信