Ketogenesis protects against MASLD-MASH progression through mechanisms that extend beyond overall fat oxidation rate.

Eric D Queathem, David Stagg, Alisa Nelson, Alec B Chaves, Scott B Crown, Kyle Fulghum, D Andre D Avignon, Justin R Ryder, Patrick J Bolan, Abdirahman Hayir, Jacob R Gillingham, Shannon Jannatpour, Ferrol I Rome, Ashley S Williams, Deborah M Muoio, Sayeed Ikramuddin, Curtis C Hughey, Patrycja Puchalska, Peter A Crawford
{"title":"Ketogenesis protects against MASLD-MASH progression through mechanisms that extend beyond overall fat oxidation rate.","authors":"Eric D Queathem, David Stagg, Alisa Nelson, Alec B Chaves, Scott B Crown, Kyle Fulghum, D Andre D Avignon, Justin R Ryder, Patrick J Bolan, Abdirahman Hayir, Jacob R Gillingham, Shannon Jannatpour, Ferrol I Rome, Ashley S Williams, Deborah M Muoio, Sayeed Ikramuddin, Curtis C Hughey, Patrycja Puchalska, Peter A Crawford","doi":"10.1101/2024.10.17.618895","DOIUrl":null,"url":null,"abstract":"<p><p>The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. We found in humans with MASH, that liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. The use of loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of hepatic ketogenesis could serve a protective role through additional mechanisms that extend beyond quantified overall rates of fat oxidation.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.17.618895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. We found in humans with MASH, that liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. The use of loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of hepatic ketogenesis could serve a protective role through additional mechanisms that extend beyond quantified overall rates of fat oxidation.

生酮能通过脂肪氧化无关机制防止 MASLD-MASH 的发展。
代谢功能障碍相关性脂肪性肝病(MASLD)发展为代谢功能障碍相关性脂肪性肝炎(MASH)涉及肝脏自主代谢和全身代谢的复杂变化,这些变化影响着肝脏脂肪增殖和处置的平衡。在这里,我们量化了肝脏氧化途径对 MASLD-MASH 肝损伤的相对贡献。我们利用核磁共振波谱、超高效液相色谱-质谱和气相色谱-质谱,进行了稳定同位素追踪和正式通量建模,以量化不同MASLD-MASH病程的人类和生酮功能受损的小鼠模型的肝脏氧化通量。我们发现,在患有 MASH 的人类中,肝损伤与酮生成和总脂肪氧化呈正相关,但与三羧酸循环的周转率无关。功能缺失小鼠模型表明,线粒体 HMG-CoA 合成酶(HMGCS2)是生酮的限速步骤,它的破坏会损害肝脏的整体脂肪氧化,并诱发类似 MASLD-MASH 的表型。此外,破坏线粒体β-羟丁酸脱氢酶(BDH1)--酮体生成的终末步骤--也会损害脂肪氧化,但令人惊讶的是,它并没有加剧脂肪肝损伤。综上所述,这些研究结果表明,整体肝脏脂肪氧化的可量化变化可能并不是 MASLD 向 MASH 进展的主要决定因素,相反,肝脏生酮的维持可通过其他脂肪氧化无关的机制起到保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信