GVVST: Image-Driven Style Extraction From Graph Visualizations for Visual Style Transfer.

Sicheng Song, Yipeng Zhang, Yanna Lin, Huamin Qu, Changbo Wang, Chenhui Li
{"title":"GVVST: Image-Driven Style Extraction From Graph Visualizations for Visual Style Transfer.","authors":"Sicheng Song, Yipeng Zhang, Yanna Lin, Huamin Qu, Changbo Wang, Chenhui Li","doi":"10.1109/TVCG.2024.3485701","DOIUrl":null,"url":null,"abstract":"<p><p>Incorporating automatic style extraction and transfer from existing well-designed graph visualizations can significantly alleviate the designer's workload. There are many types of graph visualizations. In this paper, our work focuses on node-link diagrams. We present a novel approach to streamline the design process of graph visualizations by automatically extracting visual styles from well-designed examples and applying them to other graphs. Our formative study identifies the key styles that designers consider when crafting visualizations, categorizing them into global and local styles. Leveraging deep learning techniques such as saliency detection models and multi-label classification models, we develop end-to-end pipelines for extracting both global and local styles. Global styles focus on aspects such as color scheme and layout, while local styles are concerned with the finer details of node and edge representations. Through a user study and evaluation experiment, we demonstrate the efficacy and time-saving benefits of our method, highlighting its potential to enhance the graph visualization design process.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3485701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating automatic style extraction and transfer from existing well-designed graph visualizations can significantly alleviate the designer's workload. There are many types of graph visualizations. In this paper, our work focuses on node-link diagrams. We present a novel approach to streamline the design process of graph visualizations by automatically extracting visual styles from well-designed examples and applying them to other graphs. Our formative study identifies the key styles that designers consider when crafting visualizations, categorizing them into global and local styles. Leveraging deep learning techniques such as saliency detection models and multi-label classification models, we develop end-to-end pipelines for extracting both global and local styles. Global styles focus on aspects such as color scheme and layout, while local styles are concerned with the finer details of node and edge representations. Through a user study and evaluation experiment, we demonstrate the efficacy and time-saving benefits of our method, highlighting its potential to enhance the graph visualization design process.

GVVST:从图形可视化中提取图像驱动的风格,实现可视化风格转移。
从现有设计良好的图形可视化中自动提取和转移样式,可以大大减轻设计者的工作量。图形可视化有多种类型。在本文中,我们的工作重点是节点链接图。我们提出了一种简化图形可视化设计流程的新方法,即自动从设计良好的示例中提取视觉风格,并将其应用于其他图形。我们的形成性研究确定了设计师在设计可视化时所考虑的关键风格,并将其分为全局风格和局部风格。利用显著性检测模型和多标签分类模型等深度学习技术,我们开发了用于提取全局和局部风格的端到端管道。全局风格侧重于配色方案和布局等方面,而局部风格则关注节点和边缘表示的更细微之处。通过用户研究和评估实验,我们证明了我们的方法的功效和省时的优势,突出了它在增强图形可视化设计流程方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信