Utkarsh A. Jagtap , Sanket Rathod , Ravi Shukla , Atish T. Paul
{"title":"Computational insights into human UCP1 activators through molecular docking, MM-GBSA, and molecular dynamics simulation studies","authors":"Utkarsh A. Jagtap , Sanket Rathod , Ravi Shukla , Atish T. Paul","doi":"10.1016/j.compbiolchem.2024.108252","DOIUrl":null,"url":null,"abstract":"<div><div>The prevalence of obesity is rapidly increasing worldwide. Brown adipose tissue activates uncoupling protein 1 (UCP1) to generate heat through bypassing ATP synthesis, offering a potential target for obesity treatment. Targeting UCP1 activation to induce thermogenesis through small molecules presents a promising approach for obesity management. In this study, molecular docking of UCP1 activators, using 2,4-dinitrophenol (DNP) as a reference ligand (PDB ID: 8J1N, docking score: −5.343 kcal/mol), identified seven top-scoring compounds: naringin (-7.284 kcal/mol), quercetin (-6.661 kcal/mol), salsalate (-6.017 kcal/mol), rhein (-5.798 kcal/mol), mirabegron (-5.535 kcal/mol), curcumin (-5.479 kcal/mol), and formoterol (-5.451 kcal/mol). Prime MM-GBSA calculation of the top-scored molecule (i.e., naringin) in the docking study showed ΔGBind of −70.48 kcal/mol. Key interactions of these top 7 activators with UCP1 binding pocket residues Trp280, Arg276, Glu190, Arg83, and Arg91 were observed. Molecular dynamics simulations performed for 100 ns confirmed complex stability, with RMSD values below 6 Å. Additionally, most activators showed favorable intestinal absorption (>90 %) and lipophilicity (LogP 2–4), with pKa values supporting their pharmacological potential as UCP1-targeting therapeutics for obesity. These findings provide a foundation for designing potent UCP1 activators by integrating docking scores, interaction profiles, statistical profiles from MD simulations, and physicochemical assessments to develop effective anti-obesity therapies.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108252"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002408","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of obesity is rapidly increasing worldwide. Brown adipose tissue activates uncoupling protein 1 (UCP1) to generate heat through bypassing ATP synthesis, offering a potential target for obesity treatment. Targeting UCP1 activation to induce thermogenesis through small molecules presents a promising approach for obesity management. In this study, molecular docking of UCP1 activators, using 2,4-dinitrophenol (DNP) as a reference ligand (PDB ID: 8J1N, docking score: −5.343 kcal/mol), identified seven top-scoring compounds: naringin (-7.284 kcal/mol), quercetin (-6.661 kcal/mol), salsalate (-6.017 kcal/mol), rhein (-5.798 kcal/mol), mirabegron (-5.535 kcal/mol), curcumin (-5.479 kcal/mol), and formoterol (-5.451 kcal/mol). Prime MM-GBSA calculation of the top-scored molecule (i.e., naringin) in the docking study showed ΔGBind of −70.48 kcal/mol. Key interactions of these top 7 activators with UCP1 binding pocket residues Trp280, Arg276, Glu190, Arg83, and Arg91 were observed. Molecular dynamics simulations performed for 100 ns confirmed complex stability, with RMSD values below 6 Å. Additionally, most activators showed favorable intestinal absorption (>90 %) and lipophilicity (LogP 2–4), with pKa values supporting their pharmacological potential as UCP1-targeting therapeutics for obesity. These findings provide a foundation for designing potent UCP1 activators by integrating docking scores, interaction profiles, statistical profiles from MD simulations, and physicochemical assessments to develop effective anti-obesity therapies.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.