Wenjing Fu , Mingyu Zhang , Yilin Meng , Jingyu Wang , Li Sun
{"title":"Increased NPM1 inhibit ferroptosis and aggravate renal fibrosis via Nrf2 pathway in chronic kidney disease","authors":"Wenjing Fu , Mingyu Zhang , Yilin Meng , Jingyu Wang , Li Sun","doi":"10.1016/j.bbadis.2024.167551","DOIUrl":null,"url":null,"abstract":"<div><div>Recent findings underscore the significance of ferroptosis, an innovative iron-dependent mode of cell death, in the etiology and progression of chronic kidney disease (CKD). Nucleophosmin 1 (NPM1), a nucleolar protein, contributes to fibrogenesis and modulates cellular functions and mortality. Initial investigations utilized bioinformatics techniques to pinpoint genes with altered expression in CKD and to forecast the potential links between NPM1, ferroptosis, and renal fibrosis. Increased NPM1 expression was verified in the renal tissues of CKD patients. Experimental models of renal fibrosis in both animals and cells were then used for further study. The suppression of NPM1 led to an augmentation in iron metabolism and lipid peroxidation processes integral to ferroptosis, contributing to the mitigation of renal fibrosis. In contrast, an elevation in NPM1 expression had the opposite effect. This modulation may be interconnected with the nuclear factor erythroid 2–related factor 2 pathway. Moreover, the application of the ferroptosis inhibitor, Fer-1, not only obstructed ferroptosis but also diminished NPM1 expression, which, in turn, contributed to the alleviation of renal fibrosis. Thus, our findings suggest that in CKD the NPM1 level increased and led to decreased ferroptosis and aggravated renal fibrosis via an Nrf2 pathway. Ferroptosis inhibitor can alleviate renal fibrosis.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 1","pages":"Article 167551"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005453","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent findings underscore the significance of ferroptosis, an innovative iron-dependent mode of cell death, in the etiology and progression of chronic kidney disease (CKD). Nucleophosmin 1 (NPM1), a nucleolar protein, contributes to fibrogenesis and modulates cellular functions and mortality. Initial investigations utilized bioinformatics techniques to pinpoint genes with altered expression in CKD and to forecast the potential links between NPM1, ferroptosis, and renal fibrosis. Increased NPM1 expression was verified in the renal tissues of CKD patients. Experimental models of renal fibrosis in both animals and cells were then used for further study. The suppression of NPM1 led to an augmentation in iron metabolism and lipid peroxidation processes integral to ferroptosis, contributing to the mitigation of renal fibrosis. In contrast, an elevation in NPM1 expression had the opposite effect. This modulation may be interconnected with the nuclear factor erythroid 2–related factor 2 pathway. Moreover, the application of the ferroptosis inhibitor, Fer-1, not only obstructed ferroptosis but also diminished NPM1 expression, which, in turn, contributed to the alleviation of renal fibrosis. Thus, our findings suggest that in CKD the NPM1 level increased and led to decreased ferroptosis and aggravated renal fibrosis via an Nrf2 pathway. Ferroptosis inhibitor can alleviate renal fibrosis.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.