SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for Comprehensive Quantitative Metaproteomics.

Bailu Zhang, Shichao Feng, Manushi Parajuli, Yi Xiong, Chongle Pan, Xuan Guo
{"title":"SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for Comprehensive Quantitative Metaproteomics.","authors":"Bailu Zhang, Shichao Feng, Manushi Parajuli, Yi Xiong, Chongle Pan, Xuan Guo","doi":"10.1007/978-981-97-5087-0_9","DOIUrl":null,"url":null,"abstract":"<p><p>Metaproteomics, utilizing high-throughput LC-MS, offers a profound understanding of microbial communities. Quantitative metaproteomics further enriches this understanding by measuring relative protein abundance and revealing dynamic changes under different conditions. However, the challenge of missing peptide quantification persists in metaproteomics analysis, particularly in data-dependent acquisition mode, where high-intensity precursors for MS2 scans are selected. To tackle this issue, the match-between-runs (MBR) technique is used to transfer peptides between LC-MS runs. Inspired by the benefits of MBR and the need for streamlined metaproteomics data analysis, we developed SEMQuant, an end-to-end software integrating Sipros-Ensemble's robust peptide identifications with IonQuant's MBR function. The experiments show that SEMQuant consistently obtains the highest or second highest number of quantified proteins with notable precision and accuracy. This demonstrates SEMQuant's effectiveness in conducting comprehensive and accurate quantitative metaproteomics analyses across diverse datasets and highlights its potential to propel advancements in microbial community studies. SEMQuant is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/SEMQuant.</p>","PeriodicalId":93167,"journal":{"name":"Bioinformatics research and applications : ... international symposium, ISBRA ... proceedings. ISBRA (Conference)","volume":"14956 ","pages":"102-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics research and applications : ... international symposium, ISBRA ... proceedings. ISBRA (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-981-97-5087-0_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metaproteomics, utilizing high-throughput LC-MS, offers a profound understanding of microbial communities. Quantitative metaproteomics further enriches this understanding by measuring relative protein abundance and revealing dynamic changes under different conditions. However, the challenge of missing peptide quantification persists in metaproteomics analysis, particularly in data-dependent acquisition mode, where high-intensity precursors for MS2 scans are selected. To tackle this issue, the match-between-runs (MBR) technique is used to transfer peptides between LC-MS runs. Inspired by the benefits of MBR and the need for streamlined metaproteomics data analysis, we developed SEMQuant, an end-to-end software integrating Sipros-Ensemble's robust peptide identifications with IonQuant's MBR function. The experiments show that SEMQuant consistently obtains the highest or second highest number of quantified proteins with notable precision and accuracy. This demonstrates SEMQuant's effectiveness in conducting comprehensive and accurate quantitative metaproteomics analyses across diverse datasets and highlights its potential to propel advancements in microbial community studies. SEMQuant is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/SEMQuant.

SEMQuant:利用匹配运行(Match-Between-Runs)扩展 Sipros-Ensemble,实现全面的定量元蛋白质组学。
利用高通量液相色谱-质谱联用仪(LC-MS)进行的元蛋白质组学研究,可以让人们深入了解微生物群落。定量元蛋白质组学通过测量蛋白质的相对丰度和揭示不同条件下的动态变化,进一步丰富了对微生物群落的了解。然而,在元蛋白质组学分析中,特别是在依赖数据的采集模式下,选择高强度前体进行 MS2 扫描时,仍然存在肽定量缺失的难题。为解决这一问题,采用了运行间匹配(MBR)技术在 LC-MS 运行间转移肽段。受 MBR 优点和简化元蛋白质组学数据分析需求的启发,我们开发了 SEMQuant,这是一款端到端的软件,集成了 Sipros-Ensemble 强大的肽鉴定功能和 IonQuant 的 MBR 功能。实验结果表明,SEMQuant 始终能获得最高或第二高的量化蛋白质数量,而且精确度和准确度都很高。这证明了SEMQuant在对不同数据集进行全面、准确的元蛋白质组学定量分析方面的有效性,并凸显了其推动微生物群落研究进步的潜力。SEMQuant 在 GNU GPL 许可下免费提供,网址为 https://github.com/Biocomputing-Research-Group/SEMQuant。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信