Halil İbrahim Özdemir, Kazım Gökhan Atman, Hüseyin Şirin, Abdullah Engin Çalık, Ibrahim Senturk, Metin Bilge, İsmail Oran, Duygu Bilge, Celal Çınar
{"title":"Super Learner Algorithm for Carotid Artery Disease Diagnosis: A Machine Learning Approach Leveraging Craniocervical CT Angiography.","authors":"Halil İbrahim Özdemir, Kazım Gökhan Atman, Hüseyin Şirin, Abdullah Engin Çalık, Ibrahim Senturk, Metin Bilge, İsmail Oran, Duygu Bilge, Celal Çınar","doi":"10.3390/tomography10100120","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a machine learning (ML) approach to diagnosing carotid artery diseases, including stenosis, aneurysm, and dissection, by leveraging craniocervical computed tomography angiography (CTA) data. A meticulously curated, balanced dataset of 122 patient cases was used, ensuring reproducibility and data quality, and this is publicly accessible at (insert dataset location). The proposed method integrates a super learner model which combines adaptive boosting, gradient boosting, and random forests algorithms, achieving an accuracy of 90%. To enhance model robustness and generalization, techniques such as k-fold cross-validation, bootstrapping, data augmentation, and the synthetic minority oversampling technique (SMOTE) were applied, expanding the dataset to 1000 instances and significantly improving performance for minority classes like aneurysm and dissection. The results highlight the pivotal role of blood vessel structural analysis in diagnosing carotid artery diseases and demonstrate the superior performance of the super learner model in comparison with state-of-the-art (SOTA) methods in terms of both accuracy and robustness. This manuscript outlines the methodology, compares the results with state-of-the-art approaches, and provides insights for future research directions in applying machine learning to medical diagnostics.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 10","pages":"1622-1644"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10100120","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a machine learning (ML) approach to diagnosing carotid artery diseases, including stenosis, aneurysm, and dissection, by leveraging craniocervical computed tomography angiography (CTA) data. A meticulously curated, balanced dataset of 122 patient cases was used, ensuring reproducibility and data quality, and this is publicly accessible at (insert dataset location). The proposed method integrates a super learner model which combines adaptive boosting, gradient boosting, and random forests algorithms, achieving an accuracy of 90%. To enhance model robustness and generalization, techniques such as k-fold cross-validation, bootstrapping, data augmentation, and the synthetic minority oversampling technique (SMOTE) were applied, expanding the dataset to 1000 instances and significantly improving performance for minority classes like aneurysm and dissection. The results highlight the pivotal role of blood vessel structural analysis in diagnosing carotid artery diseases and demonstrate the superior performance of the super learner model in comparison with state-of-the-art (SOTA) methods in terms of both accuracy and robustness. This manuscript outlines the methodology, compares the results with state-of-the-art approaches, and provides insights for future research directions in applying machine learning to medical diagnostics.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.