An Effective Computational Method for Predicting Self-Interacting Proteins Based on VGGNet Convolutional Neural Network and Gray-Level Co-occurrence Matrix.
{"title":"An Effective Computational Method for Predicting Self-Interacting Proteins Based on VGGNet Convolutional Neural Network and Gray-Level Co-occurrence Matrix.","authors":"Dan-Hua Chu, Ji-Yong An, Xiao-Mei Nie","doi":"10.1177/11769343241292224","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Predicting Self-interacting proteins (SIPs) is a crucial area of research in predicting protein functions, as well as in understanding gene-disease and disease-drug associations. These interactions are integral to numerous cellular processes and play pivotal roles within cells. However, traditional methods for identifying SIPs through biological experiments are often expensive, time-consuming, and have long cycles. Therefore, the development of effective computational methods for accurately predicting SIPs is not only necessary but also presents a significant challenge.</p><p><strong>Results: </strong>In this research, we introduce a novel computational prediction technique, VGGNGLCM, which leverages protein sequence data. This method integrates the VGGNet deep convolutional neural network (VGGN) with the Gray-Level Co-occurrence Matrix (GLCM) to detect Self-interacting proteins associations. Specifically, we initially utilized Position Specific Scoring Matrix (PSSM) to capture protein evolutionary information and integrated key features from PSSM using GLCM. We then employed VGGNet as a predictive classifier, leveraging its capabilities for powerful learning and classification prediction. Subsequently, the extracted features were input into the VGGNet deep convolutional neural network to identify Self-interacting proteins. To evaluate the performance of the VGGNGLCM model, we conducted experiments using yeast and human datasets, achieving average accuracies of 95.68% and 97.72% respectively. Additionally, we compared the prediction performance of the VGGNet classifier with that of the Convolutional Neural Network (CNN) and the state-of-the-art Support Vector Machine (SVM) using the same feature extraction method. We also compared the prediction ability of VGGNGLCM with other existing approaches. The comparison results further demonstrate the superior performance of VGGNGLCM over other prediction models in this domain.</p><p><strong>Conclusion: </strong>The experimental verification further strengthens the evidence that VGGNGLCM is effective and robust compared to existing methods. It also highlights the high accuracy and robustness of the VGGNGLCM model in predicting Self-interacting proteins (SIPs). Consequently, we believe that the VGGNGLCM method serves as a valuable computational tool and can catalyze extensive bioinformatics research related to SIPs prediction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/11769343241292224","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Predicting Self-interacting proteins (SIPs) is a crucial area of research in predicting protein functions, as well as in understanding gene-disease and disease-drug associations. These interactions are integral to numerous cellular processes and play pivotal roles within cells. However, traditional methods for identifying SIPs through biological experiments are often expensive, time-consuming, and have long cycles. Therefore, the development of effective computational methods for accurately predicting SIPs is not only necessary but also presents a significant challenge.
Results: In this research, we introduce a novel computational prediction technique, VGGNGLCM, which leverages protein sequence data. This method integrates the VGGNet deep convolutional neural network (VGGN) with the Gray-Level Co-occurrence Matrix (GLCM) to detect Self-interacting proteins associations. Specifically, we initially utilized Position Specific Scoring Matrix (PSSM) to capture protein evolutionary information and integrated key features from PSSM using GLCM. We then employed VGGNet as a predictive classifier, leveraging its capabilities for powerful learning and classification prediction. Subsequently, the extracted features were input into the VGGNet deep convolutional neural network to identify Self-interacting proteins. To evaluate the performance of the VGGNGLCM model, we conducted experiments using yeast and human datasets, achieving average accuracies of 95.68% and 97.72% respectively. Additionally, we compared the prediction performance of the VGGNet classifier with that of the Convolutional Neural Network (CNN) and the state-of-the-art Support Vector Machine (SVM) using the same feature extraction method. We also compared the prediction ability of VGGNGLCM with other existing approaches. The comparison results further demonstrate the superior performance of VGGNGLCM over other prediction models in this domain.
Conclusion: The experimental verification further strengthens the evidence that VGGNGLCM is effective and robust compared to existing methods. It also highlights the high accuracy and robustness of the VGGNGLCM model in predicting Self-interacting proteins (SIPs). Consequently, we believe that the VGGNGLCM method serves as a valuable computational tool and can catalyze extensive bioinformatics research related to SIPs prediction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.