Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge

IF 23.8 1区 医学 Q1 MEDICAL INFORMATICS
Jun Ma PhD , Yao Zhang PhD , Song Gu MSc , Cheng Ge MSc , Shihao Mae BSc , Adamo Young MSc , Cheng Zhu PhD , Prof Xin Yang PhD , Prof Kangkang Meng PhD , Ziyan Huang BSc , Fan Zhang MSc , Yuanke Pan MSc , Shoujin Huang BSc , Jiacheng Wang PhD , Mingze Sun PhD , Prof Rongguo Zhang PhD , Dengqiang Jia PhD , Jae Won Choi MD , Natália Alves MSc , Bram de Wilde PhD , Prof Bo Wang PhD
{"title":"Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge","authors":"Jun Ma PhD ,&nbsp;Yao Zhang PhD ,&nbsp;Song Gu MSc ,&nbsp;Cheng Ge MSc ,&nbsp;Shihao Mae BSc ,&nbsp;Adamo Young MSc ,&nbsp;Cheng Zhu PhD ,&nbsp;Prof Xin Yang PhD ,&nbsp;Prof Kangkang Meng PhD ,&nbsp;Ziyan Huang BSc ,&nbsp;Fan Zhang MSc ,&nbsp;Yuanke Pan MSc ,&nbsp;Shoujin Huang BSc ,&nbsp;Jiacheng Wang PhD ,&nbsp;Mingze Sun PhD ,&nbsp;Prof Rongguo Zhang PhD ,&nbsp;Dengqiang Jia PhD ,&nbsp;Jae Won Choi MD ,&nbsp;Natália Alves MSc ,&nbsp;Bram de Wilde PhD ,&nbsp;Prof Bo Wang PhD","doi":"10.1016/S2589-7500(24)00154-7","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4–91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2–91·3%), 90·0% (84·3–93·0%), and 88·5% (80·9–91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.</div></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":"6 11","pages":"Pages e815-e826"},"PeriodicalIF":23.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024001547","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4–91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2–91·3%), 90·0% (84·3–93·0%), and 88·5% (80·9–91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.
在深度学习辅助的泛癌症腹部器官量化中释放无标记数据的优势:FLARE22 挑战赛。
深度学习在腹部器官自动分割和量化方面显示出巨大的潜力。然而,大多数现有算法都依赖于专家注释,并没有在真实世界的多国环境中进行全面评估。为了解决这些局限性,我们组织了 FLARE 2022 挑战赛,以对快速、低资源和准确的腹部器官分割算法进行基准测试。我们首先构建了一个来自 50 多个临床研究小组的洲际腹部 CT 数据集。然后,我们独立验证了深度学习算法通过使用 50 张标注图像和 2000 张未标注图像,达到了 90-0%(IQR 87-4-91-3%)的中位数骰子相似系数(DSC),这可以大大降低人工标注成本。表现最好的算法成功地推广到了外部验证集,在北美、欧洲和亚洲队列中的 DSC 中值分别达到了 89-4%(85-2-91-3%)、90-0%(84-3-93-0%)和 88-5%(80-9-91-9%)。这些算法显示了使用无标签数据提高性能和缓解现代人工智能模型注释不足的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
41.20
自引率
1.60%
发文量
232
审稿时长
13 weeks
期刊介绍: The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health. The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health. We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信