{"title":"[Small-scale cross-layer fusion network for classification of diabetic retinopathy].","authors":"Ying Guo, Shaojie Li","doi":"10.7507/1001-5515.202403016","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning-based automatic classification of diabetic retinopathy (DR) helps to enhance the accuracy and efficiency of auxiliary diagnosis. This paper presents an improved residual network model for classifying DR into five different severity levels. First, the convolution in the first layer of the residual network was replaced with three smaller convolutions to reduce the computational load of the network. Second, to address the issue of inaccurate classification due to minimal differences between different severity levels, a mixed attention mechanism was introduced to make the model focus more on the crucial features of the lesions. Finally, to better extract the morphological features of the lesions in DR images, cross-layer fusion convolutions were used instead of the conventional residual structure. To validate the effectiveness of the improved model, it was applied to the Kaggle Blindness Detection competition dataset APTOS2019. The experimental results demonstrated that the proposed model achieved a classification accuracy of 97.75% and a Kappa value of 0.971 7 for the five DR severity levels. Compared to some existing models, this approach shows significant advantages in classification accuracy and performance.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 5","pages":"861-868"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527746/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202403016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning-based automatic classification of diabetic retinopathy (DR) helps to enhance the accuracy and efficiency of auxiliary diagnosis. This paper presents an improved residual network model for classifying DR into five different severity levels. First, the convolution in the first layer of the residual network was replaced with three smaller convolutions to reduce the computational load of the network. Second, to address the issue of inaccurate classification due to minimal differences between different severity levels, a mixed attention mechanism was introduced to make the model focus more on the crucial features of the lesions. Finally, to better extract the morphological features of the lesions in DR images, cross-layer fusion convolutions were used instead of the conventional residual structure. To validate the effectiveness of the improved model, it was applied to the Kaggle Blindness Detection competition dataset APTOS2019. The experimental results demonstrated that the proposed model achieved a classification accuracy of 97.75% and a Kappa value of 0.971 7 for the five DR severity levels. Compared to some existing models, this approach shows significant advantages in classification accuracy and performance.