{"title":"[A lightweight convolutional neural network for myositis classification from muscle ultrasound images].","authors":"Hao Tan, Xun Lang, Tao Wang, Bingbing He, Zhiyao Li, Yu Lu, Yufeng Zhang","doi":"10.7507/1001-5515.202301023","DOIUrl":null,"url":null,"abstract":"<p><p>Existing classification methods for myositis ultrasound images have problems of poor classification performance or high computational cost. Motivated by this difficulty, a lightweight neural network based on a soft threshold attention mechanism is proposed to cater for a better IIMs classification. The proposed network was constructed by alternately using depthwise separable convolution (DSC) and conventional convolution (CConv). Moreover, a soft threshold attention mechanism was leveraged to enhance the extraction capabilities of key features. Compared with the current dual-branch feature fusion myositis classification network with the highest classification accuracy, the classification accuracy of the network proposed in this paper increased by 5.9%, reaching 96.1%, and its computational complexity was only 0.25% of the existing method. The obtained results support that the proposed method can provide physicians with more accurate classification results at a lower computational cost, thereby greatly assisting them in their clinical diagnosis.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202301023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Existing classification methods for myositis ultrasound images have problems of poor classification performance or high computational cost. Motivated by this difficulty, a lightweight neural network based on a soft threshold attention mechanism is proposed to cater for a better IIMs classification. The proposed network was constructed by alternately using depthwise separable convolution (DSC) and conventional convolution (CConv). Moreover, a soft threshold attention mechanism was leveraged to enhance the extraction capabilities of key features. Compared with the current dual-branch feature fusion myositis classification network with the highest classification accuracy, the classification accuracy of the network proposed in this paper increased by 5.9%, reaching 96.1%, and its computational complexity was only 0.25% of the existing method. The obtained results support that the proposed method can provide physicians with more accurate classification results at a lower computational cost, thereby greatly assisting them in their clinical diagnosis.