Advancing EEG prediction with deep learning and uncertainty estimation.

Q1 Computer Science
Mats Tveter, Thomas Tveitstøl, Christoffer Hatlestad-Hall, Ana S Pérez T, Erik Taubøll, Anis Yazidi, Hugo L Hammer, Ira R J Hebold Haraldsen
{"title":"Advancing EEG prediction with deep learning and uncertainty estimation.","authors":"Mats Tveter, Thomas Tveitstøl, Christoffer Hatlestad-Hall, Ana S Pérez T, Erik Taubøll, Anis Yazidi, Hugo L Hammer, Ira R J Hebold Haraldsen","doi":"10.1186/s40708-024-00239-6","DOIUrl":null,"url":null,"abstract":"<p><p>Deep Learning (DL) has the potential to enhance patient outcomes in healthcare by implementing proficient systems for disease detection and diagnosis. However, the complexity and lack of interpretability impede their widespread adoption in critical high-stakes predictions in healthcare. Incorporating uncertainty estimations in DL systems can increase trustworthiness, providing valuable insights into the model's confidence and improving the explanation of predictions. Additionally, introducing explainability measures, recognized and embraced by healthcare experts, can help address this challenge. In this study, we investigate DL models' ability to predict sex directly from electroencephalography (EEG) data. While sex prediction have limited direct clinical application, its binary nature makes it a valuable benchmark for optimizing deep learning techniques in EEG data analysis. Furthermore, we explore the use of DL ensembles to improve performance over single models and as an approach to increase interpretability and performance through uncertainty estimation. Lastly, we use a data-driven approach to evaluate the relationship between frequency bands and sex prediction, offering insights into their relative importance. InceptionNetwork, a single DL model, achieved 90.7% accuracy and an AUC of 0.947, and the best-performing ensemble, combining variations of InceptionNetwork and EEGNet, achieved 91.1% accuracy in predicting sex from EEG data using five-fold cross-validation. Uncertainty estimation through deep ensembles led to increased prediction performance, and the models were able to classify sex in all frequency bands, indicating sex-specific features across all bands.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00239-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Learning (DL) has the potential to enhance patient outcomes in healthcare by implementing proficient systems for disease detection and diagnosis. However, the complexity and lack of interpretability impede their widespread adoption in critical high-stakes predictions in healthcare. Incorporating uncertainty estimations in DL systems can increase trustworthiness, providing valuable insights into the model's confidence and improving the explanation of predictions. Additionally, introducing explainability measures, recognized and embraced by healthcare experts, can help address this challenge. In this study, we investigate DL models' ability to predict sex directly from electroencephalography (EEG) data. While sex prediction have limited direct clinical application, its binary nature makes it a valuable benchmark for optimizing deep learning techniques in EEG data analysis. Furthermore, we explore the use of DL ensembles to improve performance over single models and as an approach to increase interpretability and performance through uncertainty estimation. Lastly, we use a data-driven approach to evaluate the relationship between frequency bands and sex prediction, offering insights into their relative importance. InceptionNetwork, a single DL model, achieved 90.7% accuracy and an AUC of 0.947, and the best-performing ensemble, combining variations of InceptionNetwork and EEGNet, achieved 91.1% accuracy in predicting sex from EEG data using five-fold cross-validation. Uncertainty estimation through deep ensembles led to increased prediction performance, and the models were able to classify sex in all frequency bands, indicating sex-specific features across all bands.

利用深度学习和不确定性估计推进脑电图预测。
深度学习(Deep Learning,DL)通过实施熟练的疾病检测和诊断系统,有望提高医疗保健领域的患者治疗效果。然而,其复杂性和缺乏可解释性阻碍了其在医疗保健领域关键的高风险预测中的广泛应用。将不确定性估计纳入 DL 系统可以提高可信度,为模型的可信度提供有价值的见解,并改善预测的解释性。此外,引入医疗专家认可和接受的可解释性措施也有助于应对这一挑战。在本研究中,我们研究了 DL 模型直接从脑电图(EEG)数据预测性别的能力。虽然性别预测的直接临床应用有限,但其二元性使其成为在脑电图数据分析中优化深度学习技术的宝贵基准。此外,我们还探索了使用 DL 集合来提高单一模型的性能,以及通过不确定性估计来提高可解释性和性能的方法。最后,我们使用数据驱动的方法来评估频段和性别预测之间的关系,从而深入了解它们的相对重要性。单一 DL 模型 InceptionNetwork 的准确率为 90.7%,AUC 为 0.947,而结合了 InceptionNetwork 和 EEGNet 变体的最佳组合,在使用五倍交叉验证从脑电图数据预测性别方面的准确率达到了 91.1%。通过深度集合进行不确定性估计提高了预测性能,模型能够对所有频段的性别进行分类,这表明所有频段都有性别特异性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信