Gamze Camlik, Besa Bilakaya, Esra Küpeli Akkol, Adrian Joshua Velaro, Siddhanshu Wasnik, Adi Muradi Muhar, Ismail Tuncer Degim, Eduardo Sobarzo-Sánchez
{"title":"Oral Active Carbon Quantum Dots for Diabetes.","authors":"Gamze Camlik, Besa Bilakaya, Esra Küpeli Akkol, Adrian Joshua Velaro, Siddhanshu Wasnik, Adi Muradi Muhar, Ismail Tuncer Degim, Eduardo Sobarzo-Sánchez","doi":"10.3390/ph17101395","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Metformin (Met), an oral drug used to treat type II diabetes, is known to control blood glucose levels. Metformin carbon quantum dots (MetCQDs) were prepared to enhance the bioavailability and effectiveness of metformin. Several studies have shown that carbon quantum dots (CQDs) have attractive properties like small particle size, high penetrability, low cytotoxicity, and ease of synthesis. CQDs are made from a carbon source, namely, citric acid, and a heteroatom, such as nitrogen. The active molecule can be a carbon source or a heteroatom, as reported here.</p><p><strong>Methods: </strong>This study aims to produce MetCQDs from an active molecule. MetCQDs were successfully produced by microwave-based production methods and characterized. The effect of the MetCQDs was tested in Wistar albino rats following a Streptozocin-induced diabetic model.</p><p><strong>Results: </strong>The results show that the products have a particle size of 9.02 ± 0.04 nm, a zeta potential of -10.4 ± 0.214 mV, and a quantum yield of 15.1 ± 0.045%. Stability studies and spectrophotometric analyses were carried out and the effectiveness of MetCQDs evaluated in diabetic rats. The results show a significant reduction in blood sugar levels (34.1-51.1%) compared to the group receiving only metformin (37.1-55.3%) over a period of 30 to 360 min. Histopathological examinations of the liver tissue indicate improvement in the liver health indicators of the group treated with MetCQDs.</p><p><strong>Conclusions: </strong>Based on these results, the products have potential therapeutic advantages in diabetes management through their increased efficacy and may have reduced side effects compared to the control group.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph17101395","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Metformin (Met), an oral drug used to treat type II diabetes, is known to control blood glucose levels. Metformin carbon quantum dots (MetCQDs) were prepared to enhance the bioavailability and effectiveness of metformin. Several studies have shown that carbon quantum dots (CQDs) have attractive properties like small particle size, high penetrability, low cytotoxicity, and ease of synthesis. CQDs are made from a carbon source, namely, citric acid, and a heteroatom, such as nitrogen. The active molecule can be a carbon source or a heteroatom, as reported here.
Methods: This study aims to produce MetCQDs from an active molecule. MetCQDs were successfully produced by microwave-based production methods and characterized. The effect of the MetCQDs was tested in Wistar albino rats following a Streptozocin-induced diabetic model.
Results: The results show that the products have a particle size of 9.02 ± 0.04 nm, a zeta potential of -10.4 ± 0.214 mV, and a quantum yield of 15.1 ± 0.045%. Stability studies and spectrophotometric analyses were carried out and the effectiveness of MetCQDs evaluated in diabetic rats. The results show a significant reduction in blood sugar levels (34.1-51.1%) compared to the group receiving only metformin (37.1-55.3%) over a period of 30 to 360 min. Histopathological examinations of the liver tissue indicate improvement in the liver health indicators of the group treated with MetCQDs.
Conclusions: Based on these results, the products have potential therapeutic advantages in diabetes management through their increased efficacy and may have reduced side effects compared to the control group.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.