High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li
{"title":"High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method.","authors":"Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li","doi":"10.1088/1361-6560/ad8b0b","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.<i>Approach.</i>In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.<i>Main results.</i>After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.<i>Significance.</i>These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8b0b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.Approach.In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.Main results.After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.Significance.These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.

高灵敏度和空间分辨率台式锥形束 XFCT 成像系统,采用像素化光子计数探测器,使用增强型多像素事件校正方法。
目的:高原子序数元素纳米粒子在肿瘤诊断和治疗方面具有潜力。X 射线荧光计算机断层扫描(XFCT)技术可通过特异性检测特征 X 射线信号,对高原子序数元素进行定量成像。XFCT 的进一步生物医学应用潜力取决于现有 XFCT 成像系统在灵敏度、空间分辨率和成像速度之间的平衡:在这项研究中,我们利用高能量分辨率像素化光子计数探测器进行 XFCT 成像。我们通过能量和相互作用位置校正,解决了光子计数探测器中多像素事件造成的性能下降问题。我们使用 PMMA 模型进行了灵敏度和空间分辨率成像实验,以验证多像素事件校正算法的有效性:主要结果:校正后,系统的灵敏度和空间分辨率均有所提高。此外,还成功实现了小鼠皮下肿瘤内钆纳米粒子的 XFCT/CBCT 双模式成像:这些结果证明了 XFCT/CBCT 双模态成像系统在基于高原子序数纳米粒子的肿瘤诊断和治疗方面的临床前研究应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信