Michaela Reissland, Oliver Hartmann, Saskia Tauch, Jeroen M. Bugter, Cristian Prieto-Garcia, Clemens Schulte, Sinah Loebbert, Daniel Solvie, Eliya Bitman-Lotan, Ashwin Narain, Anne-Claire Jacomin, Christina Schuelein-Voelk, Carmina T. Fuss, Nikolett Pahor, Carsten Ade, Viktoria Buck, Michael Potente, Vivian Li, Gerti Beliu, Armin Wiegering, Tom Grossmann, Martin Eilers, Elmar Wolf, Hans Maric, Mathias Rosenfeldt, Madelon M. Maurice, Ivan Dikic, Peter Gallant, Amir Orian, Markus E. Diefenbacher
{"title":"USP10 drives cancer stemness and enables super-competitor signalling in colorectal cancer","authors":"Michaela Reissland, Oliver Hartmann, Saskia Tauch, Jeroen M. Bugter, Cristian Prieto-Garcia, Clemens Schulte, Sinah Loebbert, Daniel Solvie, Eliya Bitman-Lotan, Ashwin Narain, Anne-Claire Jacomin, Christina Schuelein-Voelk, Carmina T. Fuss, Nikolett Pahor, Carsten Ade, Viktoria Buck, Michael Potente, Vivian Li, Gerti Beliu, Armin Wiegering, Tom Grossmann, Martin Eilers, Elmar Wolf, Hans Maric, Mathias Rosenfeldt, Madelon M. Maurice, Ivan Dikic, Peter Gallant, Amir Orian, Markus E. Diefenbacher","doi":"10.1038/s41388-024-03141-x","DOIUrl":null,"url":null,"abstract":"The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation. However, in APC-truncated cancer cells USP10 binds to β-catenin, increasing its stability which is critical for maintaining an undifferentiated tumour identity. Elimination of USP10 reduces the expression of WNT and stem cell signatures and induces the expression of differentiation genes. Remarkably, silencing of USP10 in murine and patient-derived CRC organoids established that it is essential for NOTUM signalling and the APC super competitor-phenotype, reducing tumorigenic properties of APC-truncated CRC. These findings are clinically relevant as patient-derived organoids are highly dependent on USP10, and abundance of USP10 correlates with poorer prognosis of CRC patients. Our findings reveal, therefore, a role for USP10 in CRC cell identity, stemness, and tumorigenic growth by stabilising β-Catenin, leading to aberrant WNT signalling and degradation resistant tumours. Thus, USP10 emerges as a unique therapeutic target in APC truncated CRC.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"43 50","pages":"3645-3659"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-024-03141-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03141-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation. However, in APC-truncated cancer cells USP10 binds to β-catenin, increasing its stability which is critical for maintaining an undifferentiated tumour identity. Elimination of USP10 reduces the expression of WNT and stem cell signatures and induces the expression of differentiation genes. Remarkably, silencing of USP10 in murine and patient-derived CRC organoids established that it is essential for NOTUM signalling and the APC super competitor-phenotype, reducing tumorigenic properties of APC-truncated CRC. These findings are clinically relevant as patient-derived organoids are highly dependent on USP10, and abundance of USP10 correlates with poorer prognosis of CRC patients. Our findings reveal, therefore, a role for USP10 in CRC cell identity, stemness, and tumorigenic growth by stabilising β-Catenin, leading to aberrant WNT signalling and degradation resistant tumours. Thus, USP10 emerges as a unique therapeutic target in APC truncated CRC.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.