Jean-Pierre Musabyimana, Sherihan Musa, Janice Manti, Ute Distler, Stefan Tenzer, Che Julius Ngwa, Gabriele Pradel
{"title":"The <i>Plasmodium falciparum</i> histone methyltransferase SET10 participates in a chromatin modulation network crucial for intraerythrocytic development.","authors":"Jean-Pierre Musabyimana, Sherihan Musa, Janice Manti, Ute Distler, Stefan Tenzer, Che Julius Ngwa, Gabriele Pradel","doi":"10.1128/msphere.00495-24","DOIUrl":null,"url":null,"abstract":"<p><p>The lifecycle progression of the malaria parasite <i>Plasmodium falciparum</i> requires precise tuning of gene expression including histone methylation. The histone methyltransferase <i>Pf</i>SET10 was previously described as an H3K4 methyltransferase involved in <i>var</i> gene regulation, making it a prominent antimalarial target. In this study, we investigated the role of <i>Pf</i>SET10 in the blood stages of <i>P. falciparum</i> in more detail, using tagged <i>Pf</i>SET10-knockout (KO) and -knockdown (KD) lines. We demonstrate a nuclear localization of <i>Pf</i>SET10 with peak protein levels in schizonts. <i>Pf</i>SET10 deficiency reduces intraerythrocytic growth but has no effect on gametocyte commitment and maturation. Screening of the <i>Pf</i>SET10-KO line for histone methylation variations reveals that lack of <i>Pf</i>SET10 renders the parasites unable to mark H3K18me1, while no reduction in the H3K4 methylation status could be observed. Comparative transcriptomic profiling of <i>Pf</i>SET10-KO schizonts shows an upregulation of transcripts particularly encoding proteins linked to red blood cell remodeling and antigenic variation, suggesting a repressive function of the histone methylation mark. TurboID coupled with mass spectrometry further highlights an extensive nuclear <i>Pf</i>SET10 interaction network with roles in transcriptional regulation and mRNA processing, DNA replication and repair, and chromatin remodeling. The main interactors of <i>Pf</i>SET10 include ApiAP2 transcription factors, epigenetic regulators like <i>Pf</i>HDAC1, chromatin modulators like <i>Pf</i>MORC and <i>Pf</i>ISWI, mediators of RNA polymerase II, and DNA replication licensing factors. The combined data pinpoint <i>Pf</i>SET10 as a histone methyltransferase essential for H3K18 methylation that regulates nucleic acid metabolic processes in the <i>P. falciparum</i> blood stages as part of a comprehensive chromatin modulation network.IMPORTANCEThe fine-tuned regulation of DNA replication and transcription is particularly crucial for the rapidly multiplying blood stages of malaria parasites and proteins involved in these processes represent important drug targets. This study demonstrates that contrary to previous reports the histone methyltransferase <i>Pf</i>SET10 of the malaria parasite <i>Plasmodium falciparum</i> promotes the methylation of histone 3 at lysine K18, a histone mark to date not well understood. Deficiency of <i>Pf</i>SET10 due to genetic knockout affects genes involved in intraerythrocytic development. Furthermore, in the nuclei of blood-stage parasites, <i>Pf</i>SET10 interacts with various protein complexes crucial for DNA replication, remodeling, and repair, as well as for transcriptional regulation and mRNA processing. In summary, this study highlights <i>Pf</i>SET10 as a methyltransferase affecting H3K18 methylation with critical functions in chromatin maintenance during the development of <i>P. falciparum</i> in red blood cells.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0049524"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00495-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lifecycle progression of the malaria parasite Plasmodium falciparum requires precise tuning of gene expression including histone methylation. The histone methyltransferase PfSET10 was previously described as an H3K4 methyltransferase involved in var gene regulation, making it a prominent antimalarial target. In this study, we investigated the role of PfSET10 in the blood stages of P. falciparum in more detail, using tagged PfSET10-knockout (KO) and -knockdown (KD) lines. We demonstrate a nuclear localization of PfSET10 with peak protein levels in schizonts. PfSET10 deficiency reduces intraerythrocytic growth but has no effect on gametocyte commitment and maturation. Screening of the PfSET10-KO line for histone methylation variations reveals that lack of PfSET10 renders the parasites unable to mark H3K18me1, while no reduction in the H3K4 methylation status could be observed. Comparative transcriptomic profiling of PfSET10-KO schizonts shows an upregulation of transcripts particularly encoding proteins linked to red blood cell remodeling and antigenic variation, suggesting a repressive function of the histone methylation mark. TurboID coupled with mass spectrometry further highlights an extensive nuclear PfSET10 interaction network with roles in transcriptional regulation and mRNA processing, DNA replication and repair, and chromatin remodeling. The main interactors of PfSET10 include ApiAP2 transcription factors, epigenetic regulators like PfHDAC1, chromatin modulators like PfMORC and PfISWI, mediators of RNA polymerase II, and DNA replication licensing factors. The combined data pinpoint PfSET10 as a histone methyltransferase essential for H3K18 methylation that regulates nucleic acid metabolic processes in the P. falciparum blood stages as part of a comprehensive chromatin modulation network.IMPORTANCEThe fine-tuned regulation of DNA replication and transcription is particularly crucial for the rapidly multiplying blood stages of malaria parasites and proteins involved in these processes represent important drug targets. This study demonstrates that contrary to previous reports the histone methyltransferase PfSET10 of the malaria parasite Plasmodium falciparum promotes the methylation of histone 3 at lysine K18, a histone mark to date not well understood. Deficiency of PfSET10 due to genetic knockout affects genes involved in intraerythrocytic development. Furthermore, in the nuclei of blood-stage parasites, PfSET10 interacts with various protein complexes crucial for DNA replication, remodeling, and repair, as well as for transcriptional regulation and mRNA processing. In summary, this study highlights PfSET10 as a methyltransferase affecting H3K18 methylation with critical functions in chromatin maintenance during the development of P. falciparum in red blood cells.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.