Preclinical development of SGN-CD47M: Protease-activated antibody technology enables selective tumor targeting of the innate immune checkpoint receptor CD47.

IF 5.3 2区 医学 Q1 ONCOLOGY
Matthew R Levengood, Christopher M Carosino, Xinqun Zhang, Sasha Lucas, David J Ortiz, Lori Westendorf, Alice P Chin, Arlan D Martin, Abbie Wong, Shawna M Hengel, Hao Sun, Weiping Zeng, Roma Yumul, Melissa Mc Dominguez, Yufei Chen, Janet H Zheng, Courtney A B Karlsson, Vivian H Trang, Peter D Senter, Shyra J Gardai
{"title":"Preclinical development of SGN-CD47M: Protease-activated antibody technology enables selective tumor targeting of the innate immune checkpoint receptor CD47.","authors":"Matthew R Levengood, Christopher M Carosino, Xinqun Zhang, Sasha Lucas, David J Ortiz, Lori Westendorf, Alice P Chin, Arlan D Martin, Abbie Wong, Shawna M Hengel, Hao Sun, Weiping Zeng, Roma Yumul, Melissa Mc Dominguez, Yufei Chen, Janet H Zheng, Courtney A B Karlsson, Vivian H Trang, Peter D Senter, Shyra J Gardai","doi":"10.1158/1535-7163.MCT-24-0371","DOIUrl":null,"url":null,"abstract":"<p><p>CD47 is a cell surface glycoprotein that is expressed on normal human tissues and has a key role as a marker of self. Tumor cells have coopted CD47 overexpression to evade immune surveillance and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Further, pro-phagocytic signals are not uniformly expressed in tumors and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to serve as an additional pro-phagocytic signal but also exacerbates toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 monoclonal antibody linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment. Masking technology has the potential to increase the amount of drug that reaches the tumor microenvironment, while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared to the unmasked antibody. SGN-CD47M also displays preferential activation in the tumor microenvironment that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-SIRPα interaction.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0371","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CD47 is a cell surface glycoprotein that is expressed on normal human tissues and has a key role as a marker of self. Tumor cells have coopted CD47 overexpression to evade immune surveillance and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Further, pro-phagocytic signals are not uniformly expressed in tumors and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to serve as an additional pro-phagocytic signal but also exacerbates toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 monoclonal antibody linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment. Masking technology has the potential to increase the amount of drug that reaches the tumor microenvironment, while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared to the unmasked antibody. SGN-CD47M also displays preferential activation in the tumor microenvironment that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-SIRPα interaction.

SGN-CD47M 的临床前开发:蛋白酶激活抗体技术实现了先天性免疫检查点受体 CD47 的选择性肿瘤靶向。
CD47 是一种细胞表面糖蛋白,在正常人体组织中表达,作为自身标志物起着关键作用。肿瘤细胞借助 CD47 的过度表达来逃避免疫监视,因此阻断 CD47 是肿瘤学中一个非常活跃的临床探索领域。然而,由于 CD47 在正常组织中的强表达以及阻断这种抑制信号所产生的毒性,CD47 靶向药物的临床开发变得复杂起来。此外,促吞噬信号在肿瘤中的表达并不一致,仅靠抗体阻断往往不足以激发抗肿瘤活性。在治疗设计中加入 IgG1 抗体骨架已被证明可作为额外的促吞噬信号,但也会加重正常组织的毒性。因此,针对 CD47 的更具选择性的治疗模式仍有存在的必要。为了应对这些挑战,我们开发了 SGN-CD47M,这是一种人源化的抗 CD47 IgG1 单克隆抗体,通过设计成可被肿瘤微环境中富集的活性蛋白酶裂解的连接体与新型掩蔽肽相连。掩蔽技术有可能增加到达肿瘤微环境的药物量,同时降低全身毒性。我们的研究表明,SGN-CD47M 在猴体内耐受性良好,与未掩蔽抗体相比,血液毒性耐受性提高了 20 倍。SGN-CD47M 还能优先激活肿瘤微环境,从而产生强大的单药抗肿瘤活性。由于这些原因,与针对 CD47-SIRPα 相互作用的现有疗法相比,SGN-CD47M 可能具有更强的抗肿瘤活性和更好的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信