Wenhui Lei , Wei Xu , Kang Li , Xiaofan Zhang , Shaoting Zhang
{"title":"MedLSAM: Localize and segment anything model for 3D CT images","authors":"Wenhui Lei , Wei Xu , Kang Li , Xiaofan Zhang , Shaoting Zhang","doi":"10.1016/j.media.2024.103370","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in foundation models have shown significant potential in medical image analysis. However, there is still a gap in models specifically designed for medical image localization. To address this, we introduce MedLAM, a 3D medical foundation localization model that accurately identifies any anatomical part within the body using only a few template scans. MedLAM employs two self-supervision tasks: unified anatomical mapping (UAM) and multi-scale similarity (MSS) across a comprehensive dataset of 14,012 CT scans. Furthermore, we developed MedLSAM by integrating MedLAM with the Segment Anything Model (SAM). This innovative framework requires extreme point annotations across three directions on several templates to enable MedLAM to locate the target anatomical structure in the image, with SAM performing the segmentation. It significantly reduces the amount of manual annotation required by SAM in 3D medical imaging scenarios. We conducted extensive experiments on two 3D datasets covering 38 distinct organs. Our findings are twofold: (1) MedLAM can directly localize anatomical structures using just a few template scans, achieving performance comparable to fully supervised models; (2) MedLSAM closely matches the performance of SAM and its specialized medical adaptations with manual prompts, while minimizing the need for extensive point annotations across the entire dataset. Moreover, MedLAM has the potential to be seamlessly integrated with future 3D SAM models, paving the way for enhanced segmentation performance. Our code is public at <span><span>https://github.com/openmedlab/MedLSAM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"99 ","pages":"Article 103370"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002950","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in foundation models have shown significant potential in medical image analysis. However, there is still a gap in models specifically designed for medical image localization. To address this, we introduce MedLAM, a 3D medical foundation localization model that accurately identifies any anatomical part within the body using only a few template scans. MedLAM employs two self-supervision tasks: unified anatomical mapping (UAM) and multi-scale similarity (MSS) across a comprehensive dataset of 14,012 CT scans. Furthermore, we developed MedLSAM by integrating MedLAM with the Segment Anything Model (SAM). This innovative framework requires extreme point annotations across three directions on several templates to enable MedLAM to locate the target anatomical structure in the image, with SAM performing the segmentation. It significantly reduces the amount of manual annotation required by SAM in 3D medical imaging scenarios. We conducted extensive experiments on two 3D datasets covering 38 distinct organs. Our findings are twofold: (1) MedLAM can directly localize anatomical structures using just a few template scans, achieving performance comparable to fully supervised models; (2) MedLSAM closely matches the performance of SAM and its specialized medical adaptations with manual prompts, while minimizing the need for extensive point annotations across the entire dataset. Moreover, MedLAM has the potential to be seamlessly integrated with future 3D SAM models, paving the way for enhanced segmentation performance. Our code is public at https://github.com/openmedlab/MedLSAM.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.