{"title":"Practical solutions for overcoming artificial disulfide scrambling in the non-reduced peptide mapping characterization of monoclonal antibodies.","authors":"Andrew Kleinberg, Yuan Mao, Ning Li","doi":"10.1080/19420862.2024.2420805","DOIUrl":null,"url":null,"abstract":"<p><p>Non-reduced peptide mapping provides essential data for characterizing therapeutic monoclonal antibodies by isolating disulfide connections between specific cysteines. However, conventional digestive strategies used throughout the biopharmaceutical industry have been shown to cause unintentional rearrangement of disulfide connections (disulfide scrambling), thus generating connectivity profiles that do not accurately represent the protein being analyzed. Common misconceptions (e.g. avoiding basic-pH digestion to prevent disulfide scrambling) have led to the development of alternative reagents and conditions that can alleviate this issue, but yield problematic digestion profiles. Herein, we systematically and comprehensively examine the primary considerations for accurate non-reduced peptide mapping, and provide effective, practical solutions to minimize undesired behavior while still yielding high-quality digests. Additionally, we present a method that exploits intentional disulfide scrambling as a reference tool to demonstrate the robustness of our proposed strategies. We also introduce maleimide as a cysteine-alkylating reagent and demonstrate its benefits over industry-leading analogs such as N-ethylmaleimide in terms of compatibility with regulatory reports.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2420805"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2420805","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-reduced peptide mapping provides essential data for characterizing therapeutic monoclonal antibodies by isolating disulfide connections between specific cysteines. However, conventional digestive strategies used throughout the biopharmaceutical industry have been shown to cause unintentional rearrangement of disulfide connections (disulfide scrambling), thus generating connectivity profiles that do not accurately represent the protein being analyzed. Common misconceptions (e.g. avoiding basic-pH digestion to prevent disulfide scrambling) have led to the development of alternative reagents and conditions that can alleviate this issue, but yield problematic digestion profiles. Herein, we systematically and comprehensively examine the primary considerations for accurate non-reduced peptide mapping, and provide effective, practical solutions to minimize undesired behavior while still yielding high-quality digests. Additionally, we present a method that exploits intentional disulfide scrambling as a reference tool to demonstrate the robustness of our proposed strategies. We also introduce maleimide as a cysteine-alkylating reagent and demonstrate its benefits over industry-leading analogs such as N-ethylmaleimide in terms of compatibility with regulatory reports.
期刊介绍:
mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.