{"title":"The 5-HT-related gut-brain axis in obesity","authors":"Chaoyong Jiang , Qiong Zhan , Chang Zeng","doi":"10.1016/j.lfs.2024.123171","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The incidence of obesity increases annually. It is closely related to the occurrence of cardiovascular diseases, malignant tumors, etc., and has become a major global health problem. 5-hydroxytryptamine (5-HT), a multifunctional monoamine neurotransmitter, is dispersed throughout the central nervous system and digestive tract. It is intimately related to the mechanism of obesity.</div></div><div><h3>Materials and methods</h3><div>PubMed, Web of Science and Embase were carefully searched. We collected articles that are closely related to 5-HT, the gut-brain axis, and obesity.</div></div><div><h3>Key fingdings</h3><div>The gut microbiota not only influences nutrient metabolism but also centrally meditates appetite and mood regulation. The gut-brain axis, a system connecting the gut and the brain, is known to participate in two-way communication between the gut flora and the central nervous system.</div></div><div><h3>Significance</h3><div>There have been few reports on whether peripheral and central 5-HT interact bidirectionally via the gut-brain axis and jointly play a role in the pathogenesis of obesity. In this review, we summarize the rationale for the contribution of the 5-HT-related gut-brain axis to the development of obesity and explore feasible signaling pathways, which elucidates new targets for preventing and treating obesity.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"358 ","pages":"Article 123171"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524007616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
The incidence of obesity increases annually. It is closely related to the occurrence of cardiovascular diseases, malignant tumors, etc., and has become a major global health problem. 5-hydroxytryptamine (5-HT), a multifunctional monoamine neurotransmitter, is dispersed throughout the central nervous system and digestive tract. It is intimately related to the mechanism of obesity.
Materials and methods
PubMed, Web of Science and Embase were carefully searched. We collected articles that are closely related to 5-HT, the gut-brain axis, and obesity.
Key fingdings
The gut microbiota not only influences nutrient metabolism but also centrally meditates appetite and mood regulation. The gut-brain axis, a system connecting the gut and the brain, is known to participate in two-way communication between the gut flora and the central nervous system.
Significance
There have been few reports on whether peripheral and central 5-HT interact bidirectionally via the gut-brain axis and jointly play a role in the pathogenesis of obesity. In this review, we summarize the rationale for the contribution of the 5-HT-related gut-brain axis to the development of obesity and explore feasible signaling pathways, which elucidates new targets for preventing and treating obesity.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.