Microscope-enabled disc dissolution system: Concordance between drug and polymer dissolution from an amorphous solid dispersion disc and visual disc degradation.
{"title":"Microscope-enabled disc dissolution system: Concordance between drug and polymer dissolution from an amorphous solid dispersion disc and visual disc degradation.","authors":"Shuaiqian Men, James E Polli","doi":"10.1016/j.xphs.2024.10.039","DOIUrl":null,"url":null,"abstract":"<p><p>A microscopic erosion time test was recently described to anticipate amorphous solid dispersion (ASD) drug load dispersibility limit, using 0.5 ml media volume. Studies here build upon this microscope-enabled method but focus on drug and polymer dissolution from an ASD disc, along with imaging. The objective was 1) to design and build a microscope-enabled disc dissolution system (MeDDiS) with a 900 mL dissolution volume and 2) assess the ability of MeDDiS imaging of dissolving discs to provide concordance with measured drug and polymer dissolution profiles. MeDDiS employed a digital microscope to image ASD discs and a one-liter vessel for dissolution. ASD discs containing ritonavir (5-50 % drug load) and PVPVA were fabricated and subjected to in vitro dissolution using MeDDiS, where disc diameter was quantified with time. Ritonavir and PVPVA release were also measured. Results indicate concordance between imaging and dissolution. Both found 25 % drug load to provide high drug and polymer release, but 30 % yielded low release. Quantitatively, MeDDiS images predicted drug and polymer release profiles, both above and below the drug load cliff. Overall, studies here describe a MeDDiS which has promised to anticipate drug and polymer dissolution, via imaging of dissolving discs, above and below the ASD drug load cliff.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.10.039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
A microscopic erosion time test was recently described to anticipate amorphous solid dispersion (ASD) drug load dispersibility limit, using 0.5 ml media volume. Studies here build upon this microscope-enabled method but focus on drug and polymer dissolution from an ASD disc, along with imaging. The objective was 1) to design and build a microscope-enabled disc dissolution system (MeDDiS) with a 900 mL dissolution volume and 2) assess the ability of MeDDiS imaging of dissolving discs to provide concordance with measured drug and polymer dissolution profiles. MeDDiS employed a digital microscope to image ASD discs and a one-liter vessel for dissolution. ASD discs containing ritonavir (5-50 % drug load) and PVPVA were fabricated and subjected to in vitro dissolution using MeDDiS, where disc diameter was quantified with time. Ritonavir and PVPVA release were also measured. Results indicate concordance between imaging and dissolution. Both found 25 % drug load to provide high drug and polymer release, but 30 % yielded low release. Quantitatively, MeDDiS images predicted drug and polymer release profiles, both above and below the drug load cliff. Overall, studies here describe a MeDDiS which has promised to anticipate drug and polymer dissolution, via imaging of dissolving discs, above and below the ASD drug load cliff.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.