Jaime Millán-Santiago, Carlos Calero-Cañuelo, Rafael Lucena, Soledad Cárdenas
{"title":"Coupling microextraction techniques with substrate spray mass spectrometry, towards a faster analysis of biological samples","authors":"Jaime Millán-Santiago, Carlos Calero-Cañuelo, Rafael Lucena, Soledad Cárdenas","doi":"10.1016/j.jpba.2024.116535","DOIUrl":null,"url":null,"abstract":"<div><div>Direct coupling sample preparation with mass spectrometry has risen as a reliable analytical strategy in bioanalysis as it provides a high sample throughput. This approach avoids an exhaustive separation step, thus being cost-effective compared to the traditional analytical workflow. The selectivity and sensitivity levels rely on the mass spectrometric analysis and the appropriate selection of the sample preparation. Miniaturized extraction techniques have demonstrated particular utility in this coupling thanks to their ability to pre-concentrate the target analytes while removing many of the matrix components. This article reviews the main developments in combining microextraction techniques with mass spectrometry based on electrospray ionization, a consolidated ionization technique in bioanalysis. The article aims to provide an overview of the potential of these techniques by describing the most significant examples. The different approaches are classified according to the materials or devices used to perform the extraction and analysis.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"253 ","pages":"Article 116535"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524005776","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct coupling sample preparation with mass spectrometry has risen as a reliable analytical strategy in bioanalysis as it provides a high sample throughput. This approach avoids an exhaustive separation step, thus being cost-effective compared to the traditional analytical workflow. The selectivity and sensitivity levels rely on the mass spectrometric analysis and the appropriate selection of the sample preparation. Miniaturized extraction techniques have demonstrated particular utility in this coupling thanks to their ability to pre-concentrate the target analytes while removing many of the matrix components. This article reviews the main developments in combining microextraction techniques with mass spectrometry based on electrospray ionization, a consolidated ionization technique in bioanalysis. The article aims to provide an overview of the potential of these techniques by describing the most significant examples. The different approaches are classified according to the materials or devices used to perform the extraction and analysis.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.