Timothy N. Tiambeng, Yuetian Yan, Shailin K. Patel, Victoria C. Cotham, Shunhai Wang, Ning Li
{"title":"Characterization of adeno-associated virus capsid proteins using denaturing size-exclusion chromatography coupled with mass spectrometry","authors":"Timothy N. Tiambeng, Yuetian Yan, Shailin K. Patel, Victoria C. Cotham, Shunhai Wang, Ning Li","doi":"10.1016/j.jpba.2024.116524","DOIUrl":null,"url":null,"abstract":"<div><div>Recombinant adeno-associated viruses (AAVs) are a highly effective platform for gene delivery for the treatment of many human diseases. Characterization of AAV viral protein attributes (VP), such as serotype identity, VP stoichiometry, and VP post-translational modifications, is essential to ensure product and process consistency. While size-exclusion chromatography (SEC) coupled with mass spectrometry (MS) is commonly used in the biopharmaceutical industry for analyzing protein therapeutics, its application to intact AAV VP components has not gained traction, presumably due to difficulties in achieving adequate resolution of VP(1−3) monomers. Herein, we describe the development of a denaturing SEC method and optimization of SEC parameters, including stationary phase pore size, column temperature, and mobile phase composition, to achieve effective chromatographic separation of VP(1−3). We demonstrate that an optimized dSEC-MS method featuring MS-compatible formic acid, can effectively separate VP(1−3) across AAV1, 2, 5, 6, 8, and 9 serotypes using a single column and mobile phase condition. A case study was included to showcase successful application of the dSEC-MS method in analyzing changes across different AAV production processes, yielding similar conclusions to an orthogonal approach, such as hydrophilic interaction chromatography (HILIC)- MS. Additionally, dSEC integrated with fluorescence (FLR) and ultraviolet (UV) detection can be used to semi-quantitatively identify both AAV DNA and VP components from empty and full AAV samples. Overall, this robust and MS-friendly methodological advancement could greatly streamline the development and analytical quality control processes for AAV-based gene therapies, providing a highly sensitive method for intact VP characterization.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524005661","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant adeno-associated viruses (AAVs) are a highly effective platform for gene delivery for the treatment of many human diseases. Characterization of AAV viral protein attributes (VP), such as serotype identity, VP stoichiometry, and VP post-translational modifications, is essential to ensure product and process consistency. While size-exclusion chromatography (SEC) coupled with mass spectrometry (MS) is commonly used in the biopharmaceutical industry for analyzing protein therapeutics, its application to intact AAV VP components has not gained traction, presumably due to difficulties in achieving adequate resolution of VP(1−3) monomers. Herein, we describe the development of a denaturing SEC method and optimization of SEC parameters, including stationary phase pore size, column temperature, and mobile phase composition, to achieve effective chromatographic separation of VP(1−3). We demonstrate that an optimized dSEC-MS method featuring MS-compatible formic acid, can effectively separate VP(1−3) across AAV1, 2, 5, 6, 8, and 9 serotypes using a single column and mobile phase condition. A case study was included to showcase successful application of the dSEC-MS method in analyzing changes across different AAV production processes, yielding similar conclusions to an orthogonal approach, such as hydrophilic interaction chromatography (HILIC)- MS. Additionally, dSEC integrated with fluorescence (FLR) and ultraviolet (UV) detection can be used to semi-quantitatively identify both AAV DNA and VP components from empty and full AAV samples. Overall, this robust and MS-friendly methodological advancement could greatly streamline the development and analytical quality control processes for AAV-based gene therapies, providing a highly sensitive method for intact VP characterization.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.