Shujin Fan, Yue Qiu, Jing Liu, Tianxin Zhu, Chuan Wang, Dan Liu, Li Yan, Meng Ren
{"title":"Effect of the glucagon-like peptide-1 receptor agonists on diabetic peripheral neuropathy: A meta-analysis.","authors":"Shujin Fan, Yue Qiu, Jing Liu, Tianxin Zhu, Chuan Wang, Dan Liu, Li Yan, Meng Ren","doi":"10.1111/jnc.16242","DOIUrl":null,"url":null,"abstract":"<p><p>Previous researches found that glucagon-like peptide 1 receptor agonists (GLP-1RA) offer benefits beyond their anti-diabetic properties, including weight loss and cardiovascular disease prevention. However, the effects of GLP-1RA on diabetic peripheral neuropathy (DPN) remain unclear. This meta-analysis aims to assess the potential benefits of GLP-1RA treatment in DPN patients by evaluating peripheral neural function. Following the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a meta-analysis of the clinical trials investigating the impact of GLP-1RA treatment on peripheral neural function in patients with DPN. Outcomes were measured using electrophysiological tests, including nerve conduction velocity (NCV) and action potential amplitude. Our meta-analysis included six studies with 271 participants. Following GLP-1RA treatment, NCV significantly improved compared to the control group (MD 1.74; 95% CI 1.16 to 2.33; p < 0.001) and before treatment (MD 2.16; 95% CI 1.04 to 3.27; p < 0.001). Despite the improvement in NCV, blood glucose levels did not change significantly (MD -0.20 95% CI -0.87 to 0.46, p = 0.55) indicating that GLP-1RA enhances NCV through mechanisms other than glucose lowering. Nonetheless, as a result of the limited population studied, further research is needed to strengthen the reliability of these findings.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous researches found that glucagon-like peptide 1 receptor agonists (GLP-1RA) offer benefits beyond their anti-diabetic properties, including weight loss and cardiovascular disease prevention. However, the effects of GLP-1RA on diabetic peripheral neuropathy (DPN) remain unclear. This meta-analysis aims to assess the potential benefits of GLP-1RA treatment in DPN patients by evaluating peripheral neural function. Following the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a meta-analysis of the clinical trials investigating the impact of GLP-1RA treatment on peripheral neural function in patients with DPN. Outcomes were measured using electrophysiological tests, including nerve conduction velocity (NCV) and action potential amplitude. Our meta-analysis included six studies with 271 participants. Following GLP-1RA treatment, NCV significantly improved compared to the control group (MD 1.74; 95% CI 1.16 to 2.33; p < 0.001) and before treatment (MD 2.16; 95% CI 1.04 to 3.27; p < 0.001). Despite the improvement in NCV, blood glucose levels did not change significantly (MD -0.20 95% CI -0.87 to 0.46, p = 0.55) indicating that GLP-1RA enhances NCV through mechanisms other than glucose lowering. Nonetheless, as a result of the limited population studied, further research is needed to strengthen the reliability of these findings.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.