Machine learning in microscopy - insights, opportunities and challenges.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2024-10-15 Epub Date: 2024-10-28 DOI:10.1242/jcs.262095
Inês Cunha, Emma Latron, Sebastian Bauer, Daniel Sage, Juliette Griffié
{"title":"Machine learning in microscopy - insights, opportunities and challenges.","authors":"Inês Cunha, Emma Latron, Sebastian Bauer, Daniel Sage, Juliette Griffié","doi":"10.1242/jcs.262095","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is transforming the field of image processing and analysis, from automation of laborious tasks to open-ended exploration of visual patterns. This has striking implications for image-driven life science research, particularly microscopy. In this Review, we focus on the opportunities and challenges associated with applying ML-based pipelines for microscopy datasets from a user point of view. We investigate the significance of different data characteristics - quantity, transferability and content - and how this determines which ML model(s) to use, as well as their output(s). Within the context of cell biological questions and applications, we further discuss ML utility range, namely data curation, exploration, prediction and explanation, and what they entail and translate to in the context of microscopy. Finally, we explore the challenges, common artefacts and risks associated with ML in microscopy. Building on insights from other fields, we propose how these pitfalls might be mitigated for in microscopy.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262095","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) is transforming the field of image processing and analysis, from automation of laborious tasks to open-ended exploration of visual patterns. This has striking implications for image-driven life science research, particularly microscopy. In this Review, we focus on the opportunities and challenges associated with applying ML-based pipelines for microscopy datasets from a user point of view. We investigate the significance of different data characteristics - quantity, transferability and content - and how this determines which ML model(s) to use, as well as their output(s). Within the context of cell biological questions and applications, we further discuss ML utility range, namely data curation, exploration, prediction and explanation, and what they entail and translate to in the context of microscopy. Finally, we explore the challenges, common artefacts and risks associated with ML in microscopy. Building on insights from other fields, we propose how these pitfalls might be mitigated for in microscopy.

显微镜中的机器学习--见解、机遇与挑战。
机器学习(ML)正在改变图像处理和分析领域,从繁重任务的自动化到视觉模式的开放式探索。这对以图像为驱动力的生命科学研究,尤其是显微镜研究具有重大影响。在本综述中,我们从用户的角度出发,重点探讨了将基于 ML 的管道应用于显微镜数据集的相关机遇和挑战。我们研究了不同数据特征(数量、可转移性和内容)的重要性,以及这如何决定使用哪种 ML 模型及其输出。在细胞生物学问题和应用的背景下,我们进一步讨论了 ML 的实用范围,即数据整理、探索、预测和解释,以及它们在显微镜下的含义和转化。最后,我们探讨了与显微镜中的人工智能相关的挑战、常见人工制品和风险。基于对其他领域的深入了解,我们提出了如何在显微镜中减少这些隐患。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信